論文の概要: Driving Behavior Explanation with Multi-level Fusion
- arxiv url: http://arxiv.org/abs/2012.04983v1
- Date: Wed, 9 Dec 2020 11:19:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 02:17:12.424157
- Title: Driving Behavior Explanation with Multi-level Fusion
- Title(参考訳): マルチレベル融合による運転行動説明
- Authors: H\'edi Ben-Younes and \'Eloi Zablocki and Patrick P\'erez and Matthieu
Cord
- Abstract要約: 本稿では,軌道予測モデルの振る舞いを説明する深いアーキテクチャであるBehavior Explanation with Fusionについて,BEEFを提案する。
人間の運転決定の正当化のアノテーションによって監督され、BEEFは複数のレベルから機能を融合することを学ぶ。
- 参考スコア(独自算出の注目度): 33.720369945541805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this era of active development of autonomous vehicles, it becomes crucial
to provide driving systems with the capacity to explain their decisions. In
this work, we focus on generating high-level driving explanations as the
vehicle drives. We present BEEF, for BEhavior Explanation with Fusion, a deep
architecture which explains the behavior of a trajectory prediction model.
Supervised by annotations of human driving decisions justifications, BEEF
learns to fuse features from multiple levels. Leveraging recent advances in the
multi-modal fusion literature, BEEF is carefully designed to model the
correlations between high-level decisions features and mid-level perceptual
features. The flexibility and efficiency of our approach are validated with
extensive experiments on the HDD and BDD-X datasets.
- Abstract(参考訳): 自動運転車の活発な開発の時代において、運転システムに彼らの決定を説明する能力を与えることが重要となる。
本研究は、車両の走行時に高レベル運転説明を生成することに焦点を当てる。
本稿では,軌道予測モデルの振る舞いを説明する深いアーキテクチャであるBehavior Explanation with Fusionについて,BEEFを提案する。
BEEFは、人間の運転判断の正当化のアノテーションによって監督され、複数のレベルから機能を融合することを学ぶ。
近年の多モード融合文献の進歩を活用して、BEEFは高レベル決定特徴と中レベル知覚特徴との相関を慎重にモデル化するように設計されている。
このアプローチの柔軟性と効率性は、HDDおよびBDD-Xデータセットに関する広範な実験によって検証される。
関連論文リスト
- On-Road Object Importance Estimation: A New Dataset and A Model with Multi-Fold Top-Down Guidance [70.80612792049315]
本稿では,交通オブジェクト重要度(TOI)という,新しい大規模データセットを提案する。
ボトムアップ機能とマルチフォールドトップダウンガイダンスを統合するモデルを提案する。
我々のモデルは最先端の手法を大きなマージンで上回る。
論文 参考訳(メタデータ) (2024-11-26T06:37:10Z) - Hierarchical End-to-End Autonomous Driving: Integrating BEV Perception with Deep Reinforcement Learning [23.21761407287525]
エンドツーエンドの自動運転は、従来のモジュラーパイプラインに代わる合理化された代替手段を提供する。
深層強化学習(Dep Reinforcement Learning, DRL)は、最近この分野で注目を集めている。
DRL特徴抽出ネットワークを認識フェーズに直接マッピングすることで、このギャップを埋める。
論文 参考訳(メタデータ) (2024-09-26T09:14:16Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - AHMF: Adaptive Hybrid-Memory-Fusion Model for Driver Attention Prediction [14.609639142688035]
本稿では,AHMF(Adaptive Hybrid-Memory-Fusion)ドライバの注意予測モデルを提案する。
本モデルは、まず、現在のシーンにおける特定の危険刺激に関する情報を符号化し、作業記憶を形成する。その後、長期記憶から同様の状況体験を適応的に回収し、最終的な予測を行う。
論文 参考訳(メタデータ) (2024-07-24T17:19:58Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Driveは600万以上のビデオテキストペアを備えたベンチマークデータセットである。
我々は、自律運転プロセスが知覚、予測、推論ステップの逐次的な組み合わせであると特徴付けている。
本稿では,自律システムにおける連鎖型推論性能を評価するための新しい集計評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:32:33Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models [30.23228092898916]
本稿では,ReasoningとReflectionモジュールを組み合わせたDiLuフレームワークを提案する。
大規模な実験は、ダイリューが経験を蓄積し、一般化能力において大きな優位性を示す能力を証明する。
私たちの知識を最大限に活用するために、自動運転車の意思決定において知識駆動能力を活用するのは、私たちは初めてです。
論文 参考訳(メタデータ) (2023-09-28T09:41:35Z) - EnsembleFollower: A Hybrid Car-Following Framework Based On
Reinforcement Learning and Hierarchical Planning [22.63087292154406]
先進的な人間的な車追従を実現するための階層的計画枠組みを提案する。
EnsembleFollowerフレームワークには、複数の低レベルの自動車追従モデルを司法的に管理する、高レベルの強化学習ベースのエージェントが含まれている。
提案手法は,HighDデータセットから実世界の運転データに基づいて評価する。
論文 参考訳(メタデータ) (2023-08-30T12:55:02Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。