AMINN: Autoencoder-based Multiple Instance Neural Network for Outcome
Prediction of Multifocal Liver Metastases
- URL: http://arxiv.org/abs/2012.06875v1
- Date: Sat, 12 Dec 2020 17:52:14 GMT
- Title: AMINN: Autoencoder-based Multiple Instance Neural Network for Outcome
Prediction of Multifocal Liver Metastases
- Authors: Jianan Chen, Helen M. C. Cheung, Laurent Milot, Anne L. Martel
- Abstract summary: Multifocality occurs frequently in colorectal cancer liver metastases.
Most existing biomarkers do not take the imaging features of all multifocal lesions into account.
We present an end-to-end autoencoder-based multiple instance neural network (AMINN) for the prediction of survival outcomes.
- Score: 1.7294318054149134
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Colorectal cancer is one of the most common and lethal cancers and colorectal
cancer liver metastases (CRLM) is the major cause of death in patients with
colorectal cancer. Multifocality occurs frequently in CRLM, but is relatively
unexplored in CRLM outcome prediction. Most existing clinical and imaging
biomarkers do not take the imaging features of all multifocal lesions into
account. In this paper, we present an end-to-end autoencoder-based multiple
instance neural network (AMINN) for the prediction of survival outcomes in
multifocal CRLM patients using radiomic features extracted from
contrast-enhanced MRIs. Specifically, we jointly train an autoencoder to
reconstruct input features and a multiple instance network to make predictions
by aggregating information from all tumour lesions of a patient. In addition,
we incorporate a two-step normalization technique to improve the training of
deep neural networks, built on the observation that the distributions of
radiomic features are almost always severely skewed. Experimental results
empirically validated our hypothesis that incorporating imaging features of all
lesions improves outcome prediction for multifocal cancer. The proposed ADMINN
framework achieved an area under the ROC curve (AUC) of 0.70, which is 19.5%
higher than baseline methods. We built a risk score based on the outputs of our
network and compared it to other clinical and imaging biomarkers. Our risk
score is the only one that achieved statistical significance in univariate and
multivariate cox proportional hazard modeling in our cohort of multifocal CRLM
patients. The effectiveness of incorporating all lesions and applying two-step
normalization is demonstrated by a series of ablation studies. Our code will be
released after the peer-review process.
Related papers
- M2EF-NNs: Multimodal Multi-instance Evidence Fusion Neural Networks for Cancer Survival Prediction [24.323961146023358]
We propose a neural network model called M2EF-NNs for accurate cancer survival prediction.
To capture global information in the images, we use a pre-trained Vision Transformer (ViT) model.
We are the first to apply the Dempster-Shafer evidence theory (DST) to cancer survival prediction.
arXiv Detail & Related papers (2024-08-08T02:31:04Z) - MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast
Cancer Through Multimodal Data Fusion [18.395418853966266]
We propose a novel deep learning approach for breast cancer survival risk stratification.
We employ vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level.
A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy.
arXiv Detail & Related papers (2024-02-19T02:31:36Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
We propose a multimodal transformer (PathOmics) integrating pathology and genomics insights into colon-related cancer survival prediction.
We emphasize the unsupervised pretraining to capture the intrinsic interaction between tissue microenvironments in gigapixel whole slide images.
We evaluate our approach on both TCGA colon and rectum cancer cohorts, showing that the proposed approach is competitive and outperforms state-of-the-art studies.
arXiv Detail & Related papers (2023-07-22T00:59:26Z) - RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for
Adaptive Radiotherapy [1.8161758803237067]
We develop a multimodal late fusion approach to predict radiation therapy outcomes for non-small-cell lung cancer patients.
Experiments show that the proposed multimodal paradigm with an AUC equal to $90.9%$ outperforms each unimodal approach.
arXiv Detail & Related papers (2022-04-26T16:32:52Z) - Metastatic Cancer Outcome Prediction with Injective Multiple Instance
Pooling [1.0965065178451103]
We process two public datasets to set up a benchmark cohort of 341 patient in total for studying outcome prediction of metastatic cancer.
We propose two injective multiple instance pooling functions that are better suited to outcome prediction.
Our results show that multiple instance learning with injective pooling functions can achieve state-of-the-art performance in the non-small-cell lung cancer CT and head and neck CT outcome prediction benchmarking tasks.
arXiv Detail & Related papers (2022-03-09T16:58:03Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.