論文の概要: Modeling Homophone Noise for Robust Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2012.08396v1
- Date: Tue, 15 Dec 2020 16:12:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 11:27:52.717281
- Title: Modeling Homophone Noise for Robust Neural Machine Translation
- Title(参考訳): ロバストニューラルネットワーク翻訳のためのホモホンノイズのモデル化
- Authors: Wenjie Qin, Xiang Li, Yuhui Sun, Deyi Xiong, Jianwei Cui, Bin Wang
- Abstract要約: このフレームワークは、ホモホンノイズディテクタと、ホモホンエラーに対する音節対応NMTモデルで構成されています。
検出器は、テキスト文中の潜在的ホモフォン誤りを特定し、それらを音節に変換して混合シーケンスを形成し、音節認識NMTに入力する。
- 参考スコア(独自算出の注目度): 23.022527815382862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a robust neural machine translation (NMT)
framework. The framework consists of a homophone noise detector and a
syllable-aware NMT model to homophone errors. The detector identifies potential
homophone errors in a textual sentence and converts them into syllables to form
a mixed sequence that is then fed into the syllable-aware NMT. Extensive
experiments on Chinese->English translation demonstrate that our proposed
method not only significantly outperforms baselines on noisy test sets with
homophone noise, but also achieves a substantial improvement on clean text.
- Abstract(参考訳): 本稿では,頑健なニューラルネットワーク翻訳(NMT)フレームワークを提案する。
このフレームワークは、ホモフォーンノイズ検知器と、ホモフォーンエラーに対する音節認識NMTモデルで構成されている。
検出器は、テキスト文中の潜在的ホモフォン誤りを特定し、それらを音節に変換して混合シーケンスを形成し、音節認識NMTに入力する。
広範にわたる中国語訳実験により, 提案手法は, 音素雑音を伴う雑音テスト集合のベースラインを著しく上回るだけでなく, クリーンテキストの大幅な改善を実現した。
関連論文リスト
- Large Language Models are Efficient Learners of Noise-Robust Speech
Recognition [65.95847272465124]
大規模言語モデル(LLM)の最近の進歩は、自動音声認識(ASR)のための生成誤り訂正(GER)を促進している。
本研究では,このベンチマークをノイズの多い条件に拡張し,GERのデノナイジングをLLMに教えることができるかを検討する。
最新のLLM実験では,単語誤り率を最大53.9%改善し,新たなブレークスルーを実現している。
論文 参考訳(メタデータ) (2024-01-19T01:29:27Z) - Learning Homographic Disambiguation Representation for Neural Machine
Translation [20.242134720005467]
ニューラル・マシン・トランスレーション(NMT)において、同じ綴りだが異なる意味を持つ単語であるホモグラフは依然として困難である
我々は、潜伏空間におけるNMT問題に取り組むための新しいアプローチを提案する。
まず、自然言語推論(NLI)タスクで普遍的な文表現を学ぶために、エンコーダ(別名ホモグラフィックエンコーダ)を訓練する。
さらに、ホモグラフベースの合成WordNetを用いてエンコーダを微調整し、文から単語集合表現を学習する。
論文 参考訳(メタデータ) (2023-04-12T13:42:59Z) - READIN: A Chinese Multi-Task Benchmark with Realistic and Diverse Input
Noises [87.70001456418504]
我々は、Realistic and Diverse Input Noisesを用いた中国のマルチタスクベンチマークREADINを構築した。
READINには4つの多様なタスクとアノテータが含まれており、Pinyin入力と音声入力という2つの一般的な中国語入力方式で元のテストデータを再入力するよう要求する。
我々は、強化された事前訓練された言語モデルと、堅牢なトレーニング手法を用いて実験を行い、これらのモデルがREADINに顕著な性能低下を被ることがしばしば見いだされた。
論文 参考訳(メタデータ) (2023-02-14T20:14:39Z) - Frequency-Aware Contrastive Learning for Neural Machine Translation [24.336356651877388]
低周波ワード予測は、現代のニューラルマシン翻訳(NMT)システムにおいて依然として課題である。
低周波単語がよりコンパクトな埋め込み空間を形成するという観察に触発されて、表現学習の観点からこの問題に取り組む。
本稿では,各復号ステップの隠蔽状態を他のターゲット語から押し出す,周波数対応のトークンレベルのコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-29T10:10:10Z) - Integrated Semantic and Phonetic Post-correction for Chinese Speech
Recognition [1.2914521751805657]
提案手法は,中国語ASRの誤り率を軽減するために,誤りとその置換候補間の文脈的表現と音声情報を総合的に活用する手法である。
実世界の音声認識実験の結果,提案手法はベースラインモデルよりも明らかに低いことがわかった。
論文 参考訳(メタデータ) (2021-11-16T11:55:27Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
機械翻訳モデルは通常、トレーニングコーパスで稀な名前付きエンティティの翻訳を貧弱に生成することが示されている。
文中の名前付きエンティティ翻訳精度を向上させるために,大量のモノリンガルデータと知識ベースを利用するDenoising Entity Pre-training法であるDEEPを提案する。
論文 参考訳(メタデータ) (2021-11-14T17:28:09Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Addressing the Vulnerability of NMT in Input Perturbations [10.103375853643547]
文脈拡張再構成手法により,雑音のある単語の効果を低減し,NMTモデルのロバスト性を向上させる。
CERは、(1)入力シーケンスの自然性を判断するステップ、(2)より優れた、より堅牢な文脈表現を生成することで、ノイズ伝搬を防御するステップの2つのステップで、ノイズに抵抗するモデルを訓練する。
論文 参考訳(メタデータ) (2021-04-20T07:52:58Z) - Improving Translation Robustness with Visual Cues and Error Correction [58.97421756225425]
ノイズの多いテキストに対する翻訳の堅牢性を改善するビジュアルコンテキストのアイデアを紹介します。
また,誤り訂正を補助タスクとして扱うことで,新しい誤り訂正訓練手法を提案する。
論文 参考訳(メタデータ) (2021-03-12T15:31:34Z) - Robust Unsupervised Neural Machine Translation with Adversarial
Denoising Training [66.39561682517741]
unsupervised neural machine translation (UNMT) は機械翻訳コミュニティに大きな関心を集めている。
UNMTの主な利点は、必要な大規模な訓練用テキストの簡単な収集にある。
本稿では,UNMT ベースのシステムのロバスト性を改善するため,まずノイズを考慮に入れた。
論文 参考訳(メタデータ) (2020-02-28T05:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。