論文の概要: Predicting Events in MOBA Games: Dataset, Attribution, and Evaluation
- arxiv url: http://arxiv.org/abs/2012.09424v3
- Date: Thu, 24 Dec 2020 07:47:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-02 20:42:04.665767
- Title: Predicting Events in MOBA Games: Dataset, Attribution, and Evaluation
- Title(参考訳): MOBAゲームにおけるイベント予測:データセット、属性、評価
- Authors: Zelong Yang, Yan Wang, Piji Li, Shaobin Lin, Shuming Shi, Shao-Lun
Huang
- Abstract要約: 本研究では,MOBAゲーム『Honor of Kings』のゲーム内機能を含む大規模データセットを収集,リリースする。
次に,2つのグラデーションに基づくアトリビューション手法を用いて,入力特徴に対する予測をアトリビュートすることにより,4種類の重要事象を解釈可能な方法で予測することを提案する。
- 参考スコア(独自算出の注目度): 37.16502752193698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The multiplayer online battle arena (MOBA) games have become increasingly
popular in recent years. Consequently, many efforts have been devoted to
providing pre-game or in-game predictions for them. However, these works are
limited in the following two aspects: 1) the lack of sufficient in-game
features; 2) the absence of interpretability in the prediction results. These
two limitations greatly restrict the practical performance and industrial
application of the current works. In this work, we collect and release a
large-scale dataset containing rich in-game features for the popular MOBA game
Honor of Kings. We then propose to predict four types of important events in an
interpretable way by attributing the predictions to the input features using
two gradient-based attribution methods: Integrated Gradients and SmoothGrad. To
evaluate the explanatory power of different models and attribution methods, a
fidelity-based evaluation metric is further proposed. Finally, we evaluate the
accuracy and Fidelity of several competitive methods on the collected dataset
to assess how well machines predict events in MOBA games.
- Abstract(参考訳): マルチプレイヤーオンラインバトルアリーナ(moba)ゲームは近年ますます人気が高まっている。
その結果、ゲーム前またはゲーム内予測の提供に多くの努力が注がれている。
しかし,これらの研究は,1)ゲーム内特徴の不足,2)予測結果における解釈可能性の欠如,の2つの側面で制限されている。
この2つの制限は、現在の作品の実用的性能と工業的応用を著しく制限した。
本研究では,MOBAゲーム『Honor of Kings』のゲーム内機能を含む大規模データセットを収集,リリースする。
次に,2つのグラデーションに基づく帰属法を用いて,入力特徴に予測を帰属させることにより,解釈可能な方法で4種類の重要な事象を予測することを提案する。
異なるモデルの説明力と帰属方法を評価するために, 忠実度に基づく評価指標を提案する。
最後に,mobaゲームにおけるイベントの予測精度を評価するため,収集したデータセットにおける複数の競合手法の精度と信頼性を評価した。
関連論文リスト
- MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPredは、トレーニングサンプルで表されるマルチモーダルな概念に基づいて、その予測を説明する。
MulCPredは複数のデータセットとタスクで評価される。
論文 参考訳(メタデータ) (2024-09-14T14:15:28Z) - Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance Analysis [24.683917771144536]
ゼロサム競争シナリオにおけるバランスを定量化する尺度を開発する。
我々は、合成の有用なカテゴリを特定し、それらのカウンター関係をピンポイントする。
私たちのフレームワークは、Eage of Empires II、Hearthstone、Brawl Stars、League of Legendsなど、人気のあるオンラインゲームで検証されています。
論文 参考訳(メタデータ) (2024-08-30T10:28:36Z) - Predicting Outcomes in Video Games with Long Short Term Memory Networks [0.39723189359605243]
本研究は,ゲームトーナメントにおける観客エンゲージメントを高めるために,リアルタイムな勝利予測手法を導入することを目的とする。
概念実証として,従来の2人プレイのアーケードゲームSuper Street Fighter II Turboにおけるモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-02-24T22:36:23Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
ニューラルビデオゲームシミュレータのためのPGM(Promptable Game Model)を提案する。
ユーザーは高レベルのアクションシーケンスと低レベルのアクションシーケンスでゲームを実行することができる。
私たちのPGMは、エージェントの目標をプロンプトの形で指定することで、ディレクターのモードをアンロックします。
提案手法は,既存のニューラルビデオゲームシミュレータのレンダリング品質を著しく上回り,現在の最先端の能力を超えたアプリケーションをアンロックする。
論文 参考訳(メタデータ) (2023-03-23T17:43:17Z) - Combining Sequential and Aggregated Data for Churn Prediction in Casual
Freemium Games [0.0]
フリーミアムゲームでは、プレイヤーからの収益はアプリ内購入とプレイヤーが露出する広告から得られる。
このシナリオでは、プレーヤーがプレイをやめようとしているときにすぐに検出できることが極めて重要である。
本研究では, 逐次データと集約データを組み合わせることで, チャーン予測の最先端性を改善する方法について検討する。
論文 参考訳(メタデータ) (2022-09-06T14:49:18Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
本稿では,グラフ畳み込みネットワークに基づくエスポートに対する半教師付き勝利予測モデルを提案する。
GCN-WPはマッチとプレーヤに関する30以上の機能を統合し、近隣のゲームを分類するためにグラフ畳み込みを使用している。
本モデルは,LLの機械学習やスキル評価モデルと比較して,最先端の予測精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T21:38:07Z) - A Unified Taxonomy and Multimodal Dataset for Events in Invasion Games [3.7111751305143654]
本稿では,侵略ゲームにおける多種多様な低レベル・高レベルの事象を包括する普遍的な分類法を提案する。
我々は、細粒度および球中心イベントスポッティングの研究を促進するため、金標準アノテーションを用いたビデオデータと位置データからなる2つのマルチモーダルデータセットをリリースする。
論文 参考訳(メタデータ) (2021-08-25T10:09:28Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
本研究では,2段階空間時間ネットワーク(TSSTN)を提案する。
実世界のライブストリーミングシナリオにおける実験結果と応用により,提案したTSSTNモデルは予測精度と解釈可能性の両方において有効であることが示された。
論文 参考訳(メタデータ) (2020-08-14T12:00:58Z) - Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from
the First Week's Activities [56.1344233010643]
いくつかの特徴は、学習者の誘惑や興味の欠如に寄与すると考えられており、そのことが解脱や総減退につながる可能性がある。
この研究は、いくつかの機械学習アプローチを比較して、最初の1週間から早期のドロップアウトを予測することを目的としている。
論文 参考訳(メタデータ) (2020-08-12T10:44:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。