RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery
- URL: http://arxiv.org/abs/2012.09670v1
- Date: Thu, 17 Dec 2020 15:35:24 GMT
- Title: RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery
- Authors: Christian Schroeder de Witt, Catherine Tong, Valentina Zantedeschi,
Daniele De Martini, Freddie Kalaitzis, Matthew Chantry, Duncan Watson-Parris,
Piotr Bilinski
- Abstract summary: Extreme precipitation events routinely ravage economies and livelihoods around the developing world.
Data-driven deep learning approaches could widen the access to accurate multi-day forecasts.
There is currently no benchmark dataset dedicated to the study of global precipitation forecasts.
- Score: 6.462260770989231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extreme precipitation events, such as violent rainfall and hail storms,
routinely ravage economies and livelihoods around the developing world. Climate
change further aggravates this issue. Data-driven deep learning approaches
could widen the access to accurate multi-day forecasts, to mitigate against
such events. However, there is currently no benchmark dataset dedicated to the
study of global precipitation forecasts. In this paper, we introduce
\textbf{RainBench}, a new multi-modal benchmark dataset for data-driven
precipitation forecasting. It includes simulated satellite data, a selection of
relevant meteorological data from the ERA5 reanalysis product, and IMERG
precipitation data. We also release \textbf{PyRain}, a library to process large
precipitation datasets efficiently. We present an extensive analysis of our
novel dataset and establish baseline results for two benchmark medium-range
precipitation forecasting tasks. Finally, we discuss existing data-driven
weather forecasting methodologies and suggest future research avenues.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
State-of-the-art numerical weather prediction (NWP) models struggle to produce skillful rainfall forecasts in tropical regions of Africa.
We develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time.
We also find that combining our data-driven model with classical NWP further improves forecast accuracy.
arXiv Detail & Related papers (2024-10-17T22:07:53Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - SCTc-TE: A Comprehensive Formulation and Benchmark for Temporal Event Forecasting [63.01035584154509]
We develop a fully automated pipeline and construct a large-scale dataset named MidEast-TE from about 0.6 million news articles.
This dataset focuses on the cooperation and conflict events among countries mainly in the MidEast region from 2015 to 2022.
We propose a novel method LoGo that is able to take advantage of both Local and Global contexts for SCTc-TE forecasting.
arXiv Detail & Related papers (2023-12-02T07:40:21Z) - A Distributed Approach to Meteorological Predictions: Addressing Data
Imbalance in Precipitation Prediction Models through Federated Learning and
GANs [0.0]
classification of weather data involves categorizing meteorological phenomena into classes, thereby facilitating nuanced analyses and precise predictions.
It's imperative that classification algorithms proficiently navigate challenges such as data imbalances.
Data augmentation techniques can improve the model's accuracy in classifying rare but critical weather events.
arXiv Detail & Related papers (2023-10-19T21:28:20Z) - PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting [14.855615256498]
We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task.
We introduce the textbfPostRainBench, a comprehensive multi-variable NWP post-processing benchmark, and textbfCAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning framework.
Our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions.
arXiv Detail & Related papers (2023-10-04T09:27:39Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - IowaRain: A Statewide Rain Event Dataset Based on Weather Radars and
Quantitative Precipitation Estimation [0.0]
This study presents an extensive dataset of rainfall events for the state of Iowa.
It could be used for better disaster monitoring, response and recovery by paving the way for both predictive and prescriptive modeling.
arXiv Detail & Related papers (2021-07-07T18:30:38Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.