Towards a Spatiotemporal Fusion Approach to Precipitation Nowcasting
- URL: http://arxiv.org/abs/2505.19258v1
- Date: Sun, 25 May 2025 18:27:19 GMT
- Title: Towards a Spatiotemporal Fusion Approach to Precipitation Nowcasting
- Authors: Felipe Curcio, Pedro Castro, Augusto Fonseca, Rafaela Castro, Raquel Franco, Eduardo Ogasawara, Victor Stepanenko, Fabio Porto, Mariza Ferro, Eduardo Bezerra,
- Abstract summary: We propose a data fusion approach for precipitation nowcasting by integrating data from meteorological rain gauge stations in Rio de Janeiro.<n>We employ numerical weather deep learning architecture called STConvS2S, leveraging a structured dataset covering a 9 x 11 grid.<n>Among the tested configurations, the fusion-based model achieves an F1-score of 0.2033 for heavy precipitation events (greater than 25 mm/h) at a one-hour lead time.
- Score: 0.44940580193534
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the increasing availability of meteorological data from various sensors, numerical models and reanalysis products, the need for efficient data integration methods has become paramount for improving weather forecasts and hydrometeorological studies. In this work, we propose a data fusion approach for precipitation nowcasting by integrating data from meteorological and rain gauge stations in Rio de Janeiro metropolitan area with ERA5 reanalysis data and GFS numerical weather prediction. We employ the spatiotemporal deep learning architecture called STConvS2S, leveraging a structured dataset covering a 9 x 11 grid. The study spans from January 2011 to October 2024, and we evaluate the impact of integrating three surface station systems. Among the tested configurations, the fusion-based model achieves an F1-score of 0.2033 for forecasting heavy precipitation events (greater than 25 mm/h) at a one-hour lead time. Additionally, we present an ablation study to assess the contribution of each station network and propose a refined inference strategy for precipitation nowcasting, integrating the GFS numerical weather prediction (NWP) data with in-situ observations.
Related papers
- Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation [4.430758443755128]
Appa is a score-based data assimilation model producing global atmospheric trajectories at 0.25-degree resolution and 1-hour intervals.<n>Our results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
arXiv Detail & Related papers (2025-04-25T22:14:29Z) - Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
State-of-the-art numerical weather prediction (NWP) models struggle to produce skillful rainfall forecasts in tropical regions of Africa.
We develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time.
We also find that combining our data-driven model with classical NWP further improves forecast accuracy.
arXiv Detail & Related papers (2024-10-17T22:07:53Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.427841765899196]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.<n>By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.<n>It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Federated Prompt Learning for Weather Foundation Models on Devices [37.88417074427373]
On-device intelligence for weather forecasting uses local deep learning models to analyze weather patterns without centralized cloud computing.
This paper propose Federated Prompt Learning for Weather Foundation Models on Devices (FedPoD)
FedPoD enables devices to obtain highly customized models while maintaining communication efficiency.
arXiv Detail & Related papers (2023-05-23T16:59:20Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery [6.462260770989231]
Extreme precipitation events routinely ravage economies and livelihoods around the developing world.
Data-driven deep learning approaches could widen the access to accurate multi-day forecasts.
There is currently no benchmark dataset dedicated to the study of global precipitation forecasts.
arXiv Detail & Related papers (2020-12-17T15:35:24Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.