論文の概要: A closed form scale bound for the $(\epsilon, \delta)$-differentially
private Gaussian Mechanism valid for all privacy regimes
- arxiv url: http://arxiv.org/abs/2012.10523v2
- Date: Thu, 21 Jan 2021 14:01:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 18:04:46.273821
- Title: A closed form scale bound for the $(\epsilon, \delta)$-differentially
private Gaussian Mechanism valid for all privacy regimes
- Title(参考訳): すべてのプライバシー制度に有効な(\epsilon, \delta)$-微分的プライベートガウス機構に縛られる閉じた形式スケール
- Authors: Staal A. Vinterbo
- Abstract要約: 同様の閉じた形式 $sigma geq delta (epsilonsqrt2)-1 left (sqrtaz+epsilon + ssqrtazright)$ for $epsilon in (0,1)$ を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard closed form lower bound on $\sigma$ for providing $(\epsilon,
\delta)$-differential privacy by adding zero mean Gaussian noise with variance
$\sigma^2$ is $\sigma > \Delta\sqrt {2}(\epsilon^{-1}) \sqrt {\log \left(
5/4\delta^{-1} \right)}$ for $\epsilon \in (0,1)$. We present a similar closed
form bound $\sigma \geq \Delta (\epsilon\sqrt{2})^{-1} \left(\sqrt{az+\epsilon}
+ s\sqrt{az}\right)$ for $z=-\log(4\delta(1-\delta))$ and $(a,s)=(1,1)$ if
$\delta \leq 1/2$ and $(a,s)=(\pi/4,-1)$ otherwise. Our bound is valid for all
$\epsilon > 0$ and is always lower (better). We also present a sufficient
condition for $(\epsilon, \delta)$-differential privacy when adding noise
distributed according to even and log-concave densities supported everywhere.
- Abstract(参考訳): 分散$\sigma^2$ is $\sigma > \delta\sqrt {2}(\epsilon^{-1}) \sqrt {\log \left(5/4\delta^{-1} \right)}$\epsilon \in (0,1)$である。
同様の閉形式は、$\sigma \geq \Delta (\epsilon\sqrt{2})^{-1} \left(\sqrt{az+\epsilon} + s\sqrt{az}\right)$ for $z=-\log(4\delta(1-\delta))$ and $(a,s)=(1,1)$ if $\delta \leq 1/2$ and $(a,s)=(\pi/4,-1)$である。
我々の境界はすべての$\epsilon > 0$に対して有効であり、常に低い(より低い)。
また,偶数と対数対数対数密度に比例して分布するノイズを付加する場合,$(\epsilon, \delta)$-differential プライバシの十分条件を示す。
関連論文リスト
- Sparsifying Suprema of Gaussian Processes [6.638504164134713]
我々は、$O_varepsilon(1)$-size subset $S subseteq T$ と、S$ における実値 $c_s_s の集合が存在することを示す。
また、中心となるガウス過程の過度にスペーシフィケーション結果を用いて、有界な幾何学的幅の凸集合に対するスペーシフィケーション補題を与える。
論文 参考訳(メタデータ) (2024-11-22T01:43:58Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
連続有限サム最小化(continuous finite-sum minimization)と呼ばれる有限サム最小化の鍵となるツイストを提案する。
我々のアプローチは$mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$で大幅に改善されます。
また、$mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$という自然な一階法は存在しないことを証明し、この方法の第一階法がほぼ密であることを示す。
論文 参考訳(メタデータ) (2024-06-07T08:26:31Z) - Coresets for Multiple $\ell_p$ Regression [47.790126028106734]
サイズ $tilde O(varepsilon-2d)$ for $p2$ と $tilde O(varepsilon-pdp/2)$ for $p>2$ のコアセットを構築します。
1p2$の場合、すべての行列は$tilde O(varepsilon-1k)$行のサブセットを持ち、$(varepsilon-1k)$-a optimal $k$-dimensional subspace for $ell_p$ subspace approximationである。
論文 参考訳(メタデータ) (2024-06-04T15:50:42Z) - Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity [22.615156512223763]
本研究では,有限サム構造を目的とする分散楽観的すべり(SVOGS)法を提案する。
我々は$mathcal O(delta D2/varepsilon)$、$mathcal O(n+sqrtndelta D2/varepsilon)$、$tildemathcal O(n+sqrtndelta+L)D2/varepsilon)$の局所呼び出しを証明している。
論文 参考訳(メタデータ) (2024-05-25T08:34:49Z) - $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
コーディネータモデルにおける分散$ell_p$-regression問題のランダム化通信複雑性について考察する。
p = 2$、すなわち最小二乗回帰の場合、$tildeTheta(sd2 + sd/epsilon)$ bitsの最初の最適境界を与える。
p in (1,2)$ に対して、$tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound を得る。
論文 参考訳(メタデータ) (2023-07-11T08:51:53Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
我々は、任意のSchatten-$p$ノルムの下で、低ランク近似のためのクリロフ部分空間に基づく反復法について研究する。
我々の主な成果は、$tildeO(k/sqrtepsilon)$ matrix-vector productのみを使用するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-10T16:10:41Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
任意の整数 $ninmathbbN$, $din1,ldots,n$ および任意の $varepsilon,deltain(0,1)$ に対して、有界関数 $f:-1,1nto[-1,1]$ に対して、少なくとも$d$ の次数を学ぶことができる。
論文 参考訳(メタデータ) (2021-09-21T13:19:04Z) - Sharper bounds for online learning of smooth functions of a single
variable [0.0]
ここでは$opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$を示します。
また、$opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$ も示します。
論文 参考訳(メタデータ) (2021-05-30T23:06:21Z) - Mathematical comparison of classical and quantum mechanisms in
optimization under local differential privacy [0.0]
我々は、$mathrmEC_n(varepsilon)not=mathrmCQ_n(varepsilon)$ for every $nge3$を示し、$mathrmEC_n(varepsilon)$と$mathrmCQ_n(varepsilon)$の差をある方法で見積もる。
論文 参考訳(メタデータ) (2020-11-19T17:05:11Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
有限和の有限ノイズ構造を利用して、大域オラクルモデルの下での一致する$O(n2)$-upper境界を導出する。
同様のアプローチを踏襲したSVRGの新規な適応法を提案し、これはオラクルと互換性があり、$tildeO(n2+nsqrtL/mu)log (1/epsilon)$と$O(nsqrtL/epsilon)$, for $mu>0$と$mu=0$の複雑さ境界を実現する。
論文 参考訳(メタデータ) (2020-02-09T03:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。