論文の概要: Unsupervised Scale-Invariant Multispectral Shape Matching
- arxiv url: http://arxiv.org/abs/2012.10685v1
- Date: Sat, 19 Dec 2020 13:44:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 11:15:11.135057
- Title: Unsupervised Scale-Invariant Multispectral Shape Matching
- Title(参考訳): 教師なしスケール不変マルチスペクトル形状マッチング
- Authors: Idan Pazi, Dvir Ginzburg, Dan Raviv
- Abstract要約: 非剛性伸縮構造間のアライメントは、コンピュータビジョンにおける最も難しいタスクの1つである。
スケール不変ジオメトリのスペクトルに基づく教師なしニューラルネットワークアーキテクチャを提案する。
本手法は局所的な変形によらず,異なる領域の形状のマッチングに優れた性能を示す。
- 参考スコア(独自算出の注目度): 7.04719493717788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alignment between non-rigid stretchable structures is one of the hardest
tasks in computer vision, as the invariant properties are hard to define on one
hand, and on the other hand no labelled data exists for real datasets. We
present unsupervised neural network architecture based upon the spectrum of
scale-invariant geometry. We build ontop the functional maps architecture, but
show that learning local features, as done until now, is not enough once the
isometric assumption breaks but can be solved using scale-invariant geometry.
Our method is agnostic to local-scale deformations and shows superior
performance for matching shapes from different domains when compared to
existing spectral state-of-the-art solutions.
- Abstract(参考訳): 非剛性伸縮構造間のアライメントはコンピュータビジョンにおいて最も難しいタスクの1つであり、不変性は一方では定義が困難であり、他方では実際のデータセットにはラベル付きデータが存在しない。
本稿では,スケール不変幾何のスペクトルに基づく教師なしニューラルネットワークアーキテクチャを提案する。
関数型マップアーキテクチャの上に構築するが、局所的な特徴の学習は、等尺的仮定が破れれば十分ではないが、スケール不変幾何を用いて解けることを示す。
本手法は局所的な変形によらず,既存のスペクトル状態の解と比較して異なる領域の形状をマッチングする優れた性能を示す。
関連論文リスト
- Hybrid Functional Maps for Crease-Aware Non-Isometric Shape Matching [42.0728900164228]
ラプラス・ベルトラミ作用素(LBO)固有モデムの固有関数と弾性薄殻ヘシアンの固有関数の非直交外部基底を結合する新しいアプローチを提案する。
各種の教師なしおよび教師なしの設定に対して広範囲な評価を行い,大幅な改善を示した。
論文 参考訳(メタデータ) (2023-12-06T18:41:01Z) - Deformation-Guided Unsupervised Non-Rigid Shape Matching [7.327850781641328]
非厳密な形状マッチングのための教師なしデータ駆動方式を提案する。
本手法は,3次元スキャナを用いたディジタル形状のマッチングにおいて特に堅牢である。
論文 参考訳(メタデータ) (2023-11-27T09:55:55Z) - Bending Graphs: Hierarchical Shape Matching using Gated Optimal
Transport [80.64516377977183]
形状マッチングは、コンピュータグラフィックスと視覚のコミュニティにとって長い間研究されてきた問題である。
局所的なパッチレベル情報とグローバルな形状レベルの構造を組み込んだ階層型学習設計について検討する。
本研究では,非信頼ノード上の特徴を逐次更新し,形状間の一貫した一致を学習することで,新しい最適輸送解法を提案する。
論文 参考訳(メタデータ) (2022-02-03T11:41:46Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
形状空間学習に対称性を組み込む自然な方法は、形状空間(エンコーダ)への写像と形状空間(デコーダ)からの写像が関連する対称性に同値であることを問うことである。
本稿では,2つのコントリビューションを導入することで,エンコーダとデコーダの等価性を組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-03T06:41:19Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Dual Geometric Graph Network (DG2N) -- Iterative network for deformable
shape alignment [8.325327265120283]
局所的特徴が写像確率である双対グラフ構造を用いて幾何学的モデルを整列する新しい手法を提案する。
メッシュと点の雲の高速で安定な解における伸縮性ドメインのアライメントに関する技術成果を報告する。
論文 参考訳(メタデータ) (2020-11-30T12:03:28Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
DSG-Netは3次元形状の非交叉構造と幾何学的メッシュ表現を学習するディープニューラルネットワークである。
これは、幾何(構造)を不変に保ちながら構造(幾何学)のような不整合制御を持つ新しい形状生成アプリケーションの範囲をサポートする。
本手法は,制御可能な生成アプリケーションだけでなく,高品質な合成形状を生成できる。
論文 参考訳(メタデータ) (2020-08-12T17:06:51Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) 問題は、複数のフレームにまたがる2次元特徴対応から変形物体の3次元形状を復元することを目的としている。
提案手法は,ノイズに対する精度,スケーラビリティ,堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2020-06-15T09:15:54Z) - Equivariant Maps for Hierarchical Structures [17.931059591895984]
階層構造の対称性は、ビルディングブロックの対称性の「死積」であることを示す。
点雲を酸化することにより、データに翻訳と置換の対称性の階層を課す。
私たちは、Semantic3D、S3DIS、vKITTIに関する最新の技術について報告します。
論文 参考訳(メタデータ) (2020-06-05T18:42:12Z) - ProAlignNet : Unsupervised Learning for Progressively Aligning Noisy
Contours [12.791313859673187]
ProAlignNetは、輪郭形状間の大規模なミスアライメントと複雑な変換を説明できる。
近接感度および局所形状依存類似度測定値の上界から導出される新しい損失関数を用いて学習する。
実世界の2つの応用において、提案したモデルは最先端の手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2020-05-23T14:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。