論文の概要: EMLight: Lighting Estimation via Spherical Distribution Approximation
- arxiv url: http://arxiv.org/abs/2012.11116v1
- Date: Mon, 21 Dec 2020 04:54:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 10:08:41.458148
- Title: EMLight: Lighting Estimation via Spherical Distribution Approximation
- Title(参考訳): EMLight:球面分布近似による照明推定
- Authors: Fangneng Zhan, Changgong Zhang, Yingchen Yu, Yuan Chang, Shijian Lu,
Feiying Ma, Xuansong Xie
- Abstract要約: 本稿では,回帰ネットワークとニューラルプロジェクタを用いて正確な照明推定を行う照明推定フレームワークを提案する。
照明マップを球状光分布、光強度、周囲期間に分解します。
予測された球面分布、光強度、周囲項の誘導の下で、神経プロジェクターは現実的な光周波数でパノラマ照明マップを合成する。
- 参考スコア(独自算出の注目度): 33.26530733479459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Illumination estimation from a single image is critical in 3D rendering and
it has been investigated extensively in the computer vision and computer
graphic research community. On the other hand, existing works estimate
illumination by either regressing light parameters or generating illumination
maps that are often hard to optimize or tend to produce inaccurate predictions.
We propose Earth Mover Light (EMLight), an illumination estimation framework
that leverages a regression network and a neural projector for accurate
illumination estimation. We decompose the illumination map into spherical light
distribution, light intensity and the ambient term, and define the illumination
estimation as a parameter regression task for the three illumination
components. Motivated by the Earth Mover distance, we design a novel spherical
mover's loss that guides to regress light distribution parameters accurately by
taking advantage of the subtleties of spherical distribution. Under the
guidance of the predicted spherical distribution, light intensity and ambient
term, the neural projector synthesizes panoramic illumination maps with
realistic light frequency. Extensive experiments show that EMLight achieves
accurate illumination estimation and the generated relighting in 3D object
embedding exhibits superior plausibility and fidelity as compared with
state-of-the-art methods.
- Abstract(参考訳): 単一画像からの照明推定は3次元レンダリングにおいて重要であり、コンピュータビジョンおよびコンピュータグラフィック研究コミュニティで広く研究されている。
一方、既存の作品では、光パラメータを後退させるか、最適化が難しいか不正確な予測を生成する傾向がある照明マップを生成するかで照明を推定している。
我々は、回帰ネットワークとニューラルプロジェクタを利用して正確な照明推定を行う照明推定フレームワークであるEarth Mover Light(EMLight)を提案する。
照明図を球状光分布,光強度,周囲項に分解し,照明推定を3つの照明成分のパラメータ回帰タスクとして定義する。
本研究では,球面分布の微妙な性質を生かして,光分布パラメータを正確に後退させる新しい球面移動器の損失をデザインする。
予測された球面分布、光強度、周囲項の誘導の下で、神経プロジェクターは現実的な光周波数でパノラマ照明マップを合成する。
広範囲な実験により,EMLightは正確な照明推定を達成し,3次元物体の埋め込みにおいて生成した照度は,最先端の手法と比較して高い妥当性と忠実性を示すことがわかった。
関連論文リスト
- MixLight: Borrowing the Best of both Spherical Harmonics and Gaussian Models [69.39388799906409]
既存の作業では、照明マップを生成したり、照明パラメータを回帰することによって照明を推定する。
本稿では,SHとSGの相補的特性を利用して,より完全な照明表現を実現するジョイントモデルであるMixLightを提案する。
論文 参考訳(メタデータ) (2024-04-19T10:17:10Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
本稿では,3次元ガウス表現を用いた3次元ガウス逆レンダリング(GIR)手法を提案する。
最短固有ベクトルを用いて各3次元ガウスの正規性を計算する。
我々は3次元ガウシアン毎に方向対応の放射光を格納し、多重バウンス光輸送を近似するために二次照明をアンタングルするために、効率的なボクセルベースの間接照明追跡方式を採用する。
論文 参考訳(メタデータ) (2023-12-08T16:05:15Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
本稿では,複数視点のRGB画像からシーンの照明,幾何学,材料を学習する物理ベースの逆レンダリング手法を提案する。
副産物として、我々の物理ベースの逆レンダリングモデルは、フレキシブルでリアルな素材編集やリライティングを容易にする。
論文 参考訳(メタデータ) (2022-12-09T07:33:49Z) - A CNN Based Approach for the Point-Light Photometric Stereo Problem [26.958763133729846]
本稿では、遠距離場光度ステレオにおける深部ニューラルネットワークの最近の改良を活用して、現実的な仮定を処理できるCNNベースのアプローチを提案する。
われわれのアプローチは、DiLiGenT実世界のデータセットの最先端よりも優れている。
近距離点光源PSデータに対する我々のアプローチの性能を測定するため、LUCESを「近距離点光のための最初の実世界のデータセット」として紹介する。
論文 参考訳(メタデータ) (2022-10-10T12:57:12Z) - Sparse Needlets for Lighting Estimation with Spherical Transport Loss [89.52531416604774]
NeedleLightは、新しい照明推定モデルであり、必要に応じて照明を表現し、周波数領域と空間領域を共同で照明推定することができる。
大規模な実験により、NeedleLightは、最先端の手法と比較して、複数の評価指標で常に優れた照明推定を実現していることがわかった。
論文 参考訳(メタデータ) (2021-06-24T15:19:42Z) - GMLight: Lighting Estimation via Geometric Distribution Approximation [86.95367898017358]
本稿では,効率的な照明推定のための回帰ネットワークと生成プロジェクタを用いた照明推定フレームワークを提案する。
幾何学的な光の分布、光強度、周囲条件、および補助深さの点から照明シーンをパラメータ化し、純粋な回帰タスクとして推定します。
推定照明パラメータを用いて、生成プロジェクタはパノラマ照明マップを現実的な外観と周波数で合成する。
論文 参考訳(メタデータ) (2021-02-20T03:31:52Z) - Deep Lighting Environment Map Estimation from Spherical Panoramas [0.0]
本稿では,単一のLDR単分子球状パノラマからHDR照明環境マップを推定するデータ駆動モデルを提案する。
データジェネレータと監視機構として画像ベースのリライティングを活用するために,表面形状の可用性を活用する。
論文 参考訳(メタデータ) (2020-05-16T14:23:05Z) - Lighthouse: Predicting Lighting Volumes for Spatially-Coherent
Illumination [84.00096195633793]
入力狭帯域ステレオ画像ペアからシーン内の任意の3次元位置における入射照度を推定する深層学習ソリューションを提案する。
本モデルでは,入力ステレオペア近傍の視野ビューと,各シーン内の球状パノラマのみを監督する。
提案手法は,高精細な仮想物体を実画像に挿入して照らし出すのに十分な空間変化の連続した照明を予測できることを実証する。
論文 参考訳(メタデータ) (2020-03-18T17:46:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。