論文の概要: The Less Intelligent the Elements, the More Intelligent the Whole. Or, Possibly Not?
- arxiv url: http://arxiv.org/abs/2012.12689v4
- Date: Thu, 03 Apr 2025 16:33:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:53:28.801764
- Title: The Less Intelligent the Elements, the More Intelligent the Whole. Or, Possibly Not?
- Title(参考訳): 知能の低い要素は、より知能の強いものか、それとも、おそらくそうでないものか?
- Authors: Guido Fioretti, Andrea Policarpi,
- Abstract要約: 線形外挿に基づく予測を行う能力を持つ捕食者と捕食者の両方を授けることで,新しい種類の動的平衡が現れることがわかった。
単純なエージェントは複雑な集団的行動の出現を好むが、個人が互いの行動の1次微分を取る能力は、任意の順序の微分の集合計算を可能にすることを示唆する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We approach the debate on how ``intelligent'' artificial agents should be, by endowing the preys and predators of the Lotka-Volterra model with behavioural algorithms characterized by different levels of sophistication. We find that by endowing both preys and predators with the capability of making predictions based on linear extrapolation a novel sort of dynamic equilibrium appears, where both species co-exist while both populations grow indefinitely. While we confirm that, in general, simple agents favour the emergence of complex collective behaviour, we also suggest that the capability of individuals to take first-order derivatives of one other's behaviour may allow the collective computation of derivatives of any order.
- Abstract(参考訳): 我々は,ロトカ・ボルテラモデルの捕食者や捕食者に対して,異なるレベルの高度化を特徴とする行動アルゴリズムを付与することにより,'intelligent'人工エージェントがどうあるべきか,という議論にアプローチする。
両個体の個体群が無期限に成長する中, 線形外挿に基づく予測を行う能力によって, 両個体群が共存する新たな動的平衡が現れることがわかった。
一般論として、単純なエージェントは複雑な集団的行動の出現を好むが、個人が互いの行動の1次微分を取る能力は、任意の順序の微分の集合計算を可能にすることを示唆する。
関連論文リスト
- On a Functional Definition of Intelligence [0.0]
合意されたインテリジェンスの定義がなければ、"このシステムはインテリジェントか?
知性(intelligence)とは、哲学、心理学、認知科学の分野である。
我々は、その知性が実際に達成される方法とは異なる、純粋に機能的でブラックボックスな知性の定義について論じる。
論文 参考訳(メタデータ) (2023-12-15T05:46:49Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - The Nature of Intelligence [0.0]
人間とAIの両方で一般的に表現される知性の本質は不明である。
インテリジェンスの性質は,システムエントロピーを最小限に抑える数学的に機能する一連のプロセスであることを示す。
このエッセイは、宇宙と私たちを人間としてより深く理解するための出発点となるべきです。
論文 参考訳(メタデータ) (2023-07-20T23:11:59Z) - When to Make Exceptions: Exploring Language Models as Accounts of Human
Moral Judgment [96.77970239683475]
AIシステムは人間の道徳的判断や決定を理解し、解釈し、予測しなければなりません。
AIの安全性に対する中心的な課題は、人間の道徳心の柔軟性を捉えることだ。
ルール破りの質問応答からなる新しい課題セットを提案する。
論文 参考訳(メタデータ) (2022-10-04T09:04:27Z) - A World-Self Model Towards Understanding Intelligence [0.0]
我々は、人間と人工知能を比較し、人間の知性の特定の側面が認識と認知を結びつける鍵である、と提案する。
我々は、より広範な概念、新しいモデルのWSM(World-Self Model)の原理と数学的枠組み、そして最後にWSMに基づいた統合されたインテリジェンス・フレームワークを提示する。
論文 参考訳(メタデータ) (2022-03-25T16:42:23Z) - Reward is not enough: can we liberate AI from the reinforcement learning paradigm? [0.0]
Reward氏は、自然と人工知能に関連する多くの活動を説明するには不十分だ。
知的行動の複雑さは、報酬の最大化の上の2階の複雑さだけではない。
論文 参考訳(メタデータ) (2022-02-03T18:31:48Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。