論文の概要: Gender Bias in Multilingual Neural Machine Translation: The Architecture
Matters
- arxiv url: http://arxiv.org/abs/2012.13176v1
- Date: Thu, 24 Dec 2020 09:27:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 08:20:44.212735
- Title: Gender Bias in Multilingual Neural Machine Translation: The Architecture
Matters
- Title(参考訳): 多言語ニューラルマシン翻訳におけるジェンダーバイアス:アーキテクチャの問題
- Authors: Marta R. Costa-juss\`a, Carlos Escolano, Christine Basta, Javier
Ferrando, Roser Batlle and Ksenia Kharitonova
- Abstract要約: 本稿では,選択したアーキテクチャが,同じデータを用いてトレーニングされた場合,性別バイアスの精度に影響を及ぼすかどうかを検討する。
4つの言語対の実験により、言語固有のエンコーダ-デコーダは共有エンコーダ-デコーダアーキテクチャよりもバイアスが少ないことが示されている。
- 参考スコア(独自算出の注目度): 1.8472148461613158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual Neural Machine Translation architectures mainly differ in the
amount of sharing modules and parameters among languages. In this paper, and
from an algorithmic perspective, we explore if the chosen architecture, when
trained with the same data, influences the gender bias accuracy. Experiments in
four language pairs show that Language-Specific encoders-decoders exhibit less
bias than the Shared encoder-decoder architecture. Further interpretability
analysis of source embeddings and the attention shows that, in the
Language-Specific case, the embeddings encode more gender information, and its
attention is more diverted. Both behaviors help in mitigating gender bias.
- Abstract(参考訳): 多言語ニューラルマシン翻訳アーキテクチャは、主に言語間のモジュールやパラメータの共有量が異なる。
本稿では、アルゴリズムの観点から、選択したアーキテクチャが同じデータで訓練された場合、性別バイアスの精度に影響を与えるかどうかを考察する。
4つの言語対の実験により、言語固有のエンコーダ-デコーダは共有エンコーダ-デコーダアーキテクチャよりもバイアスが少ないことが示されている。
情報源埋め込みと注意のさらなる解釈可能性分析は、言語特化の場合、埋め込みはより多くの性別情報をエンコードし、その注意はより分散していることを示している。
両方の行動は男女のバイアスを軽減するのに役立つ。
関連論文リスト
- Twists, Humps, and Pebbles: Multilingual Speech Recognition Models Exhibit Gender Performance Gaps [25.95711246919163]
現在の自動音声認識(ASR)モデルは、多くの言語やタスクでかなりの変更を加えることなく使用できるように設計されている。
本研究では,3つのデータセット上で広く使用されている2つの多言語ASRモデルの性能を体系的に評価する。
以上の結果から,言語やモデルによって異なる傾向がみられた。
論文 参考訳(メタデータ) (2024-02-28T00:24:29Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
並列データが利用できない言語間のギャップを埋めることは、多言語NTTの性別バイアスに影響を与える。
本研究では, 言語に依存しない隠蔽表現が, ジェンダーの保存能力に及ぼす影響について検討した。
言語に依存しない表現は、ゼロショットモデルの男性バイアスを緩和し、ブリッジ言語におけるジェンダーインフレクションのレベルが増加し、話者関連性合意に対するより公平なジェンダー保存に関するゼロショット翻訳を超越することがわかった。
論文 参考訳(メタデータ) (2023-05-26T13:51:50Z) - Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation [28.471506840241602]
ジェンダーバイアスは機械翻訳において重要な問題であり、バイアス軽減技術の研究が進行中である。
本稿では,新しいアプローチに基づくバイアス緩和手法を提案する。
Gender-Aware Contrastive Learning, GACLは、文脈性情報を非明示性単語の表現にエンコードする。
論文 参考訳(メタデータ) (2023-05-23T12:53:39Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
実践的なケーススタディとして,ジェンダーの区別の表現に焦点をあてる。
ジェンダーの概念が、異なる言語で共有された部分空間にエンコードされる範囲について検討する。
論文 参考訳(メタデータ) (2022-04-20T00:13:01Z) - Gender in Danger? Evaluating Speech Translation Technology on the
MuST-SHE Corpus [20.766890957411132]
英語のような生産的な文法的なジェンダーのない言語からジェンダーマーク付き言語に翻訳することは、機械にとってよく知られた困難である。
ジェンダーバイアスを減らすために、オーディオは追加情報を提供できるか?
本稿では、音声翻訳における性差に関する最初の徹底的な調査を行い、将来の研究に役立つベンチマークのリリースに寄与する。
論文 参考訳(メタデータ) (2020-06-10T09:55:38Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
多言語埋め込みにおけるジェンダーバイアスとNLPアプリケーションの伝達学習への影響について検討する。
我々は、バイアス分析のための多言語データセットを作成し、多言語表現におけるバイアスの定量化方法をいくつか提案する。
論文 参考訳(メタデータ) (2020-05-02T04:34:37Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。