論文の概要: ZX-calculus for the working quantum computer scientist
- arxiv url: http://arxiv.org/abs/2012.13966v1
- Date: Sun, 27 Dec 2020 15:54:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 03:56:03.079631
- Title: ZX-calculus for the working quantum computer scientist
- Title(参考訳): 量子計算機科学者のためのZX計算
- Authors: John van de Wetering
- Abstract要約: ZX-計算(ZX-calculus)は、量子計算を推論するためのグラフィカル言語である。
このレビューでは、量子コンピューティングの基礎に精通した人々に適したZX計算について、穏やかに紹介する。
後者のセクションでは、ZX-計算に関する文献の概要がまとめられている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ZX-calculus is a graphical language for reasoning about quantum
computation that has recently seen an increased usage in a variety of areas
such as quantum circuit optimisation, surface codes and lattice surgery,
measurement-based quantum computation, and quantum foundations. The first half
of this review gives a gentle introduction to the ZX-calculus suitable for
those familiar with the basics of quantum computing. The aim here is to make
the reader comfortable enough with the ZX-calculus that they could use it in
their daily work for small computations on quantum circuits and states. The
latter sections give a condensed overview of the literature on the ZX-calculus.
We discuss Clifford computation and graphically prove the Gottesman-Knill
theorem, we discuss a recently introduced extension of the ZX-calculus that
allows for convenient reasoning about Toffoli gates, and we discuss the recent
completeness theorems for the ZX-calculus that show that, in principle, all
reasoning about quantum computation can be done using ZX-diagrams.
Additionally, we discuss the categorical and algebraic origins of the
ZX-calculus and we discuss several extensions of the language which can
represent mixed states, measurement, classical control and higher-dimensional
qudits.
- Abstract(参考訳): ZX計算は、量子計算を推論するためのグラフィカル言語であり、最近量子回路最適化、表面符号、格子手術、測定ベースの量子計算、量子基礎など、様々な分野での利用が増加している。
このレビューの前半は、量子コンピューティングの基礎に精通した人々に適したZX計算を穏やかに紹介している。
ここでの目標は、量子回路や状態の小さな計算に日々の作業で使用できるように、読者をZX計算で十分に快適にすることだ。
後者のセクションでは、ZX-計算に関する文献の概要がまとめられている。
我々はクリフォードの計算を議論し、ゴッテマン・クニルの定理をグラフィカルに証明し、最近導入されたトッホリゲートに関する便利な推論を可能にするZX-計算の拡張について議論し、ZX-計算に対する最近の完全性定理について議論し、原理的には、量子計算に関するすべての推論はZX-ダイアグラムを用いて可能であることを示す。
さらに、ZX-計算の分類的および代数的起源について論じ、混合状態、測定、古典的制御、高次元キューディットを表現できる言語のいくつかの拡張について論じる。
関連論文リスト
- ZX-calculus is Complete for Finite-Dimensional Hilbert Spaces [0.09831489366502298]
ZX計算(ZX-calculus)は、量子コンピューティングと量子情報理論のためのグラフィカル言語である。
有限次元ZX-計算の完全性を証明し、混合次元Z-スパイダーとqudit X-スパイダーのみをジェネレータとして組み込む。
我々のアプローチは、他のグラフィカル言語である有限次元ZW-計算の完全性に基づいており、これら2つの計算間の直接変換が可能である。
論文 参考訳(メタデータ) (2024-05-17T16:35:07Z) - Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying
calculus [0.2348805691644085]
ZX-計算(ZX-calculus)は、量子ビット計算のための普遍的なグラフィカル言語である。
ZW-計算(ZW-calculus)は、量子ビット量子コンピューティングでも完備な、汎用的なグラフィカル言語である。
これら2つの計算を組み合わせることで、量子ビット量子計算のための新しい計算、ZXW-計算が誕生した。
論文 参考訳(メタデータ) (2023-02-23T16:18:57Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
量子コンピュータは、古典的コンピュータが決して起こらない重要な問題を効率的に解決することを約束する。
完全に自動化された量子ソフトウェアスタックを開発する必要がある。
この研究は、今日のツールの"内部"の外観を提供し、量子回路のシミュレーション、コンパイル、検証などにおいてこれらの手段がどのように利用されるかを示す。
論文 参考訳(メタデータ) (2023-01-10T19:00:00Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
浅量子回路の計算能力と古典計算の組合せを包括的に評価する。
いくつかの問題に対して、1つの浅い量子回路で適応的な測定を行う能力は、適応的な測定をせずに多くの浅い量子回路を実行する能力よりも有用である。
論文 参考訳(メタデータ) (2022-10-12T17:54:02Z) - Completeness of the ZX-calculus [0.3655021726150367]
我々は、全純量子ビット量子力学に対して、ZX-計算の最初の完全公理化を与える。
これは、Quantomaticのようなソフトウェアを駆使して、自動画像量子コンピューティングの道を開くものだ。
論文 参考訳(メタデータ) (2022-09-29T16:01:47Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
本稿では,高レベル言語で記述された量子回路から,アルゴリズム固有のグラフ状態を作成する量子回路コンパイラを提案する。
この計算は、このグラフ状態に関する一連の非パウリ測度を用いて実装することができる。
論文 参考訳(メタデータ) (2022-09-15T14:52:31Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
まず、量子力学とグラフ理論の相関関係について、量子コンピュータが有用な解を生成できることを示す。
本稿では,その実践性と適用性について,一般的なグラフ学習手法について概説する。
今後の研究の触媒として期待される量子グラフ学習のスナップショットを提供する。
論文 参考訳(メタデータ) (2022-02-19T02:56:47Z) - Qufinite ZX-calculus: a unified framework of qudit ZX-calculi [0.3655021726150367]
任意の有限次元において、qubit ZX-計算をqudit ZX-計算に一般化する。
我々は、全てのqudit ZX-calculiに対する統一的なフレームワークとして、qufinite ZX-calculusと呼ばれるグラフィカルフォーマリズムを提案する。
論文 参考訳(メタデータ) (2021-04-13T18:10:13Z) - Quantum Algorithms and Oracles with the Scalable ZX-calculus [0.0]
スケーラブルなZX計算は、量子アルゴリズムを記述・証明するための形式的で直感的でコンパクトなフレームワークを提供する。
Deutsch-Jozsa、Bernstein-Vazirani、Simon、Groverアルゴリズム。
論文 参考訳(メタデータ) (2021-04-02T13:27:48Z) - PBS-Calculus: A Graphical Language for Coherent Control of Quantum
Computations [77.34726150561087]
本稿では,量子演算のコヒーレント制御を含む量子計算を表現・推論するためにPBS計算を導入する。
我々はこの言語に方程式理論を加え、それが健全で完備であることが証明された。
我々は、制御された置換の実装やループのアンロールのようなアプリケーションを考える。
論文 参考訳(メタデータ) (2020-02-21T16:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。