Intrinsic quantum coherence in particle oscillations
- URL: http://arxiv.org/abs/2012.14866v1
- Date: Tue, 29 Dec 2020 17:35:51 GMT
- Title: Intrinsic quantum coherence in particle oscillations
- Authors: Anca Tureanu
- Abstract summary: In this talk, several inconsistencies of the standard approach to particle oscillations will be explained.
The massive neutrino states are interpreted as quasiparticles on a vacuum condensate of "Cooper pairs" of massless neutrinos.
The newly defined oscillating particle states are for neutrino oscillations what the Klauder--Sudarshan--Glauber coherent states are for quantum optics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum field theoretical description of coherence in the oscillations of
particles, especially neutrinos, is a standing problem in particle physics. In
this talk, several inconsistencies of the standard approach to particle
oscillations will be explained, and how they are resolved in a
process-independent manner, by a novel approach inspired by the
Bardeen--Cooper--Schrieffer theory of superconductivity and the
Nambu--Jona-Lasinio model. The formalism leads to corrections to the neutrino
oscillation probability originally written by Pontecorvo and Gribov, however
the standard probability is validated in the ultrarelativistic neutrino limit.
The massive neutrino states are interpreted as quasiparticles on a vacuum
condensate of "Cooper pairs" of massless flavour neutrinos. The newly defined
oscillating particle states are for neutrino oscillations what the
Klauder--Sudarshan--Glauber coherent states are for quantum optics.
Related papers
- Quantum coherence in neutrino spin-flavor oscillations [0.0]
Coherence is a fundamental concept in quantum mechanics and can be precisely defined within quantum resource theory.
Previous studies on quantum coherence have focused on neutrino flavor oscillations (FO)
In this work, we investigate quantum coherence in neutrino SFO with three flavor mixing within the interstellar as well as intergalactic magnetic fields.
arXiv Detail & Related papers (2024-07-23T17:53:33Z) - Once-in-a-lifetime encounter models for neutrino media: From coherent oscillations to flavor equilibration [0.0]
We develop new quantum models for neutrino gases in which any pair of neutrinos can interact at most once in their lifetimes.
These models demonstrate the emergence of coherent flavor oscillations from the particle perspective.
arXiv Detail & Related papers (2024-02-07T16:43:27Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Quantum coherence in neutrino oscillation in matter [0.0]
neutrino oscillation occurs because the quantum states of the produced and detected neutrinos are a coherent superposition of the mass eigenstates.
We consider the decoherence due to the neutrino interaction in the material medium with constant density in addition to the decoherence coming from the localization properties.
arXiv Detail & Related papers (2022-04-26T14:19:39Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
Noncommuting charges have emerged as a subfield at the intersection of quantum thermodynamics and quantum information.
We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations.
We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Neutrino mixing and oscillations in quantum field theory: a
comprehensive introduction [0.0]
We show that the quantum field theoretical framework, where flavor vacuum is defined, permits to give a precise definition of flavor states.
We show that the gauge theory structure underlies the neutrino mixing phenomenon and that there exist entanglement between mixed neutrinos.
arXiv Detail & Related papers (2021-11-23T11:51:43Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - The Neutrino Casimir Force [77.34726150561087]
We calculate the neutrino Casimir force between plates, allowing for two different mass eigenstates within the loop.
We discuss the possibility of distinguishing whether neutrinos are Majorana or Dirac fermions using these quantum forces.
arXiv Detail & Related papers (2020-03-24T18:00:02Z) - Theory of Neutrino Detection -- Flavor Oscillations and Weak Values [0.0]
We show that, in the relativistic limit, the quantum theory of neutrino oscillations can be described through the theory of weak measurements.
We write down the flavor equation of motion and calculate the flavor oscillation probability by showing precisely how a single neutrino interferes with itself.
arXiv Detail & Related papers (2020-02-18T22:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.