論文の概要: Trapping Sets of Quantum LDPC Codes
- arxiv url: http://arxiv.org/abs/2012.15297v2
- Date: Thu, 7 Oct 2021 06:30:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 07:38:31.978316
- Title: Trapping Sets of Quantum LDPC Codes
- Title(参考訳): 量子LDPC符号のトラッピングセット
- Authors: Nithin Raveendran and Bane Vasi\'c
- Abstract要約: 量子トラップセット(QTS)を,そのトポロジカル構造とデコーダに基づいて同定し,分類する。
より優れたQLDPC符号やデコーダの設計にQTSの知識を利用できることを示す。
- 参考スコア(独自算出の注目度): 9.482750811734565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Iterative decoders for finite length quantum low-density parity-check (QLDPC)
codes are attractive because their hardware complexity scales only linearly
with the number of physical qubits. However, they are impacted by short cycles,
detrimental graphical configurations known as trapping sets (TSs) present in a
code graph as well as symmetric degeneracy of errors. These factors
significantly degrade the decoder decoding probability performance and cause
so-called error floor. In this paper, we establish a systematic methodology by
which one can identify and classify quantum trapping sets (QTSs) according to
their topological structure and decoder used. The conventional definition of a
TS from classical error correction is generalized to address the syndrome
decoding scenario for QLDPC codes. We show that the knowledge of QTSs can be
used to design better QLDPC codes and decoders. Frame error rate improvements
of two orders of magnitude in the error floor regime are demonstrated for some
practical finite-length QLDPC codes without requiring any post-processing.
- Abstract(参考訳): 有限長量子低密度パリティチェック(QLDPC)符号に対する反復デコーダは、ハードウェアの複雑さが物理量子ビットの数にのみ線形にスケールするため、魅力的である。
しかし、それらは短いサイクル、コードグラフに存在するトラップセット(TSs)として知られる有害なグラフィカルな構成、およびエラーの対称な退化の影響を受けている。
これらの要因はデコーダの復号確率性能を著しく低下させ、いわゆるエラーフロアを引き起こす。
本稿では,量子トラップセット(QTS)を,その位相構造とデコーダに基づいて識別・分類できる体系的手法を確立する。
QLDPC符号のシンドローム復号シナリオに対処するために、古典的誤り訂正からTSの定義を一般化する。
より優れたQLDPC符号やデコーダの設計にQTSの知識を利用できることを示す。
実際の有限長QLDPC符号では, 後処理を必要とせず, 2桁のフレーム誤り率の改善が示された。
関連論文リスト
- Degenerate quantum erasure decoding [7.6119527195998025]
明示的なコードと効率的なデコーダを用いて、ニアキャパシティ性能を実現する方法を示す。
さらに、混合消去や非分極エラーなど、他のエラーモデルを扱うデコーダの可能性についても検討する。
論文 参考訳(メタデータ) (2024-11-20T18:02:05Z) - Decoding Quantum LDPC Codes Using Graph Neural Networks [52.19575718707659]
グラフニューラルネットワーク(GNN)に基づく量子低密度パリティチェック(QLDPC)符号の新しい復号法を提案する。
提案したGNNベースのQLDPCデコーダは,QLDPC符号のスパースグラフ構造を利用して,メッセージパスデコーダとして実装することができる。
論文 参考訳(メタデータ) (2024-08-09T16:47:49Z) - Ambiguity Clustering: an accurate and efficient decoder for qLDPC codes [0.0]
独立にデコードされたクラスタに計測データを分割するアルゴリズムであるAmbiguity Clustering (AC)を導入する。
ACはBP-OSDより1~3桁速く、論理的忠実度は低下しない。
我々のCPU実装であるACは、144キュービットのGross符号を、中性原子や閉じ込められたイオン系に対してリアルタイムにデコードするのに十分高速です。
論文 参考訳(メタデータ) (2024-06-20T17:39:31Z) - Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
フォールトトレラント量子コンピューティングでは、量子アルゴリズムは誤り訂正が可能な量子回路によって実装される。
本稿では,フォールトトレラント量子回路の設計と解析を行うツールキットを提案する。
論文 参考訳(メタデータ) (2024-03-15T12:56:38Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Improved Noisy Syndrome Decoding of Quantum LDPC Codes with Sliding
Window [0.0]
本研究では,過去の症候群計測ラウンドの誤差を補正するスライディングウインドウ復号法について検討した。
注目すべきは、この改善がデコーディングの複雑さを大きくするコストを伴わないことだ。
論文 参考訳(メタデータ) (2023-11-06T17:56:49Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
単一マルチレベルキューディットに実装された安定化器量子エラー訂正符号について論じる。
これらのコードは、quditの特定の物理的エラーに合わせてカスタマイズすることができ、効果的にそれらを抑制することができる。
分子スピン四重項上のフォールトトレラントな実装を実証し、線形キューディットサイズのみの成長を伴うほぼ指数関数的な誤差抑制を示す。
論文 参考訳(メタデータ) (2023-07-20T10:51:23Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
量子誤り訂正符号(QECC)は、量子通信と量子計算の両方において中心的な役割を果たす。
本稿では,有限ブロック長レジームの最大性能を達成できるQECCの構築と復号化が可能であることを示す。
論文 参考訳(メタデータ) (2022-08-04T16:18:20Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
本稿では,トポロジカル量子符号を超える幅広い符号に適用可能なセルオートマトン,スイープルールに基づく誤り訂正手法を提案する。
単純化のために, 境界付きロンボックドデカヘドラル格子上の3次元トーリック符号に着目し, 得られた局所デコーダの誤差しきい値がゼロでないことを証明した。
この誤差補正法は, 測定誤差に対して極めて堅牢であり, また, 格子モデルやノイズモデルの詳細に敏感であることがわかった。
論文 参考訳(メタデータ) (2020-04-15T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。