論文の概要: Simulating Quantum Computations with Tutte Polynomials
- arxiv url: http://arxiv.org/abs/2101.00211v2
- Date: Sat, 25 Sep 2021 10:47:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 03:40:56.236160
- Title: Simulating Quantum Computations with Tutte Polynomials
- Title(参考訳): タテ多項式による量子計算のシミュレーション
- Authors: Ryan L. Mann
- Abstract要約: 量子確率振幅を正確に計算するための古典的アルゴリズムを確立する。
本アルゴリズムは,量子回路の出力確率振幅を図形マトロイドのタテの評価にマッピングする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish a classical heuristic algorithm for exactly computing quantum
probability amplitudes. Our algorithm is based on mapping output probability
amplitudes of quantum circuits to evaluations of the Tutte polynomial of
graphic matroids. The algorithm evaluates the Tutte polynomial recursively
using the deletion-contraction property while attempting to exploit structural
properties of the matroid. We consider several variations of our algorithm and
present experimental results comparing their performance on two classes of
random quantum circuits. Further, we obtain an explicit form for Clifford
circuit amplitudes in terms of matroid invariants and an alternative efficient
classical algorithm for computing the output probability amplitudes of Clifford
circuits.
- Abstract(参考訳): 量子確率振幅を正確に計算する古典的なヒューリスティックアルゴリズムを定式化する。
本アルゴリズムは,量子回路の出力確率振幅を図形マトロイドのトゥッテ多項式の評価にマッピングする。
このアルゴリズムは、マトロイドの構造的性質を活用しつつ、削除収縮特性を用いて再帰的にチューテ多項式を評価する。
本稿では,2種類のランダム量子回路の性能を比較した実験結果とアルゴリズムのバリエーションについて考察する。
さらに、マトロイド不変量の観点からクリフォード回路振幅の明示的な形式と、クリフォード回路の出力確率振幅を計算するためのオルタナティブな古典的アルゴリズムを得る。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Sub-universal variational circuits for combinatorial optimization
problems [0.0]
この研究は、2ビット行列を用いて構築された最適化問題に対する量子近似解を生成するために設計された古典的確率回路の新たなクラスを導入する。
そこで,本研究では,最大カウト問題における変分回路の性能について検討した。
この結果から,変分回路の性能を準ユニバーサルゲートセットで評価することは,量子変分回路が励起可能な領域を特定する上で貴重な指標であることが示唆された。
論文 参考訳(メタデータ) (2023-08-29T02:16:48Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
本稿では,二項問題の近似解を計算するためのハイブリッド量子古典アルゴリズムを提案する。
我々は、重み付き最大カットまたはイジング・ハミルトン演算子をブロック符号化するユニタリおよびエルミート演算子を実装するために浅深さ量子回路を用いる。
この作用素の変動量子状態への期待を測定すると、量子系の変動エネルギーが得られる。
論文 参考訳(メタデータ) (2023-06-10T23:28:13Z) - Predicting RNA Secondary Structure on Universal Quantum Computer [2.277461161767121]
RNA構造が塩基配列からどのように折り畳み、その二次構造がどのように形成されるかを知るための最初のステップである。
従来のエネルギーベースのアルゴリズムは、特に非ネスト配列の精度が低い。
普遍量子コンピューティングのためのゲートモデルアルゴリズムは利用できない。
論文 参考訳(メタデータ) (2023-05-16T15:57:38Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Approximating outcome probabilities of linear optical circuits [0.0]
線形光回路の出力確率を近似する古典的アルゴリズムを提案する。
提案手法は,回路の古典性に応じて精度の高い結果確率を効率的に推定する。
我々の研究は線形光学のパワーに光を当て、計算複雑性の問題に多くの量子インスパイアされたアルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-11-14T08:21:51Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
この研究は、局所量子回路の出力分布の学習可能性に関する広範な評価を提供する。
ハイブリッド量子古典アルゴリズムを含む多種多様な学習アルゴリズムにおいて、深度$d=omega(log(n))$ Clifford回路に関連する生成的モデリング問題さえも困難であることを示す。
論文 参考訳(メタデータ) (2022-07-07T08:04:15Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
制約のないバイナリ最適化の問題を解決するために,光コヒーレントIsingマシンにヒントを得たアルゴリズムを提案する。
提案アルゴリズムを既存のPUBOアルゴリズムに対してベンチマークし,その優れた性能を観察する。
タンパク質の折り畳み問題や量子化学問題へのアルゴリズムの適用は、PUBO問題による電子構造問題の近似の欠点に光を当てる。
論文 参考訳(メタデータ) (2021-06-24T16:39:31Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum Algorithms for Estimating Physical Quantities using
Block-Encodings [0.30458514384586405]
我々は,n時間相関関数,局所的および非局所的状態密度,動的線形応答関数を推定するための量子アルゴリズムを提案する。
すべてのアルゴリズムはブロックエンコーディング(英語版)に基づいており、量子コンピュータ上の任意の非ユニタリな組み合わせを操作する技術である。
論文 参考訳(メタデータ) (2020-04-14T23:15:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。