High-dimensional private quantum channels and regular polytopes
- URL: http://arxiv.org/abs/2101.00230v1
- Date: Fri, 1 Jan 2021 13:37:44 GMT
- Title: High-dimensional private quantum channels and regular polytopes
- Authors: Junseo Lee, Kabgyun Jeong
- Abstract summary: We show that a one-to-one correspondence exists between single-qubit PQCs and three-dimensional regular polytopes.
We explore the explicit relationship between PQCs over a qutrit system (i.e., a three-level quantum state) and regular 4-polytope.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the quantum analog of the classical one-time pad, the private quantum
channel (PQC) plays a fundamental role in the construction of the maximally
mixed state (from any input quantum state), which is very useful for studying
secure quantum communications and quantum channel capacity problems. However,
the undoubted existence of a relation between the geometric shape of regular
polytopes and private quantum channels in the higher dimension has not yet been
reported. Recently, it was shown that a one-to-one correspondence exists
between single-qubit PQCs and three-dimensional regular polytopes (i.e.,
regular polyhedra). In this paper, we highlight these connections by exploiting
two strategies known as a generalized Gell-Mann matrix and modified quantum
Fourier transform. More precisely, we explore the explicit relationship between
PQCs over a qutrit system (i.e., a three-level quantum state) and regular
4-polytope. Finally, we attempt to devise a formula for connections on higher
dimensional cases.
Related papers
- Scheme of quantum communications based on Witting polytope [55.2480439325792]
Presented paper describes how to use this configuration for a quantum key distribution protocol based on contextuality using some illustrative examples with 40 "quantum cards"
In a more general case, two arbitrary quantum systems with four basis states (ququarts) can be used instead.
arXiv Detail & Related papers (2025-03-24T08:26:48Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - One-Shot Min-Entropy Calculation Of Classical-Quantum States And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It offers an alternative tight finite-data analysis for the BB84 quantum key distribution scheme.
It gives the best finite-key bound known to date for a variant of device independent quantum key distribution protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Cubic* criticality emerging from a quantum loop model on triangular lattice [5.252398154171938]
We show that the triangular lattice quantum loop model (QLM) hosts a rich ground state phase diagram with nematic, vison plaquette (VP) crystals, and the $mathbb$ quantum spin liquid (QSL) close to the Rokhsar-Kivelson quantum critical point.
These solutions are of immediate relevance to both statistical and quantum field theories, as well as the rapidly growing experiments in Rydberg atom arrays and quantum moir'e materials.
arXiv Detail & Related papers (2023-09-11T18:00:05Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Merlin-Arthur proof systems for synthesizing quantum states [0.0]
We investigate a state synthesizing counterpart of the class NP-synthesizing.
We establish that the family of UQMA witnesses, considered as one of the most natural candidates, is in stateQMA.
We demonstrate that stateQCMA achieves perfect completeness.
arXiv Detail & Related papers (2023-03-03T12:14:07Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Quantum multicritical point in the two- and three-dimensional random
transverse-field Ising model [0.0]
Quantum multicritical points (QMCPs) emerge at the junction of two or more quantum phase transitions.
We characterize the QMCP of an interacting heterogeneous quantum system in two and three dimensions.
The QMCP of the RTIM is found to exhibit ultraslow, activated dynamic scaling, governed by an infinite disorder fixed point.
arXiv Detail & Related papers (2021-11-12T17:19:26Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Post-Quantum Multi-Party Computation [32.75732860329838]
We study multi-party computation for classical functionalities (in the plain model) with security against malicious-time quantum adversaries.
We assume superpolynomial quantum hardness of learning with errors (LWE), and quantum hardness of an LWE-based circular security assumption.
Along the way, we develop cryptographic primitives that may be of independent interest.
arXiv Detail & Related papers (2020-05-23T00:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.