論文の概要: Bayesian optimization with improved scalability and derivative
information for efficient design of nanophotonic structures
- arxiv url: http://arxiv.org/abs/2101.02972v1
- Date: Fri, 8 Jan 2021 11:46:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 05:01:59.487582
- Title: Bayesian optimization with improved scalability and derivative
information for efficient design of nanophotonic structures
- Title(参考訳): ナノフォトニック構造の効率的な設計のための拡張性と微分情報を用いたベイズ最適化
- Authors: Xavier Garcia-Santiago, Sven Burger, Carsten Rockstuhl,
Philipp-Immanuel Schneider
- Abstract要約: 我々は, ナノフォトニックデバイスの最適設計を求めるために, 前方形状微分とベイズ最適化のための反復反転スキームの組み合わせを提案する。
このアプローチは、ベイズ最適化の適用範囲を、より多くのイテレーションが必要であり、デリバティブ情報が利用可能である状況にまで広げる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the combination of forward shape derivatives and the use of an
iterative inversion scheme for Bayesian optimization to find optimal designs of
nanophotonic devices. This approach widens the range of applicability of
Bayesian optmization to situations where a larger number of iterations is
required and where derivative information is available. This was previously
impractical because the computational efforts required to identify the next
evaluation point in the parameter space became much larger than the actual
evaluation of the objective function. We demonstrate an implementation of the
method by optimizing a waveguide edge coupler.
- Abstract(参考訳): 我々は, ナノフォトニックデバイスの最適設計を求めるために, 前方形状微分とベイズ最適化のための反復反転スキームの組み合わせを提案する。
このアプローチは、ベイズ最適化の適用範囲を、より多くのイテレーションが必要であり、デリバティブ情報が利用可能である状況にまで広げる。
これは、パラメータ空間における次の評価点を特定するために必要な計算努力が、目的関数の実際の評価よりもはるかに大きいため、以前は現実的ではなかった。
導波路エッジカプラの最適化による手法の実装を示す。
関連論文リスト
- An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
BOを高次元設定に拡張するための2段階最適化フレームワークを提案する。
私たちのアルゴリズムは、これらのステップを並列またはシーケンスで操作する柔軟性を提供します。
数値実験により,困難シナリオにおける本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-03-08T16:21:08Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments [0.0]
本稿では,偏微分方程式などの数学モデルによるベイズ逆問題に対する最適実験設計 (OED) のための二項最適化への新しいアプローチを提案する。
OEDユーティリティ関数、すなわち正規化された最適性勾配はベルヌーイ分布に対する期待の形で目的関数にキャストされる。
この目的を確率的最適化ルーチンを用いて最適な観測方針を求めることで解決する。
論文 参考訳(メタデータ) (2021-01-15T03:54:12Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
本稿では,設計ユーティリティ機能のためのカオス拡張サロゲートモデル(PCE)の開発のための新しいアプローチを提案する。
この手法により,対象関数に対する適切な品質応答面の導出が可能となり,計算予算は複数の単点評価に匹敵する。
論文 参考訳(メタデータ) (2020-08-10T09:42:59Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。