論文の概要: Sharing Heartbeats: Motivations of Citizen Scientists in Times of Crises
- arxiv url: http://arxiv.org/abs/2101.04913v2
- Date: Mon, 25 Jan 2021 15:05:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-15 17:48:19.634674
- Title: Sharing Heartbeats: Motivations of Citizen Scientists in Times of Crises
- Title(参考訳): 心臓の鼓動をシェアする: 危機時代の市民科学者のモチベーション
- Authors: Daniel Diethei, Jasmin Niess, Carolin Stellmacher, Evropi Stefanidi,
Johannes Sch\"oning
- Abstract要約: ドイツでは、Robert Koch Institute (RKI)が、仮想市民科学(VCS)プロジェクトであるCorona-Data-Donation-Appを発表した。
パンデミックの間、個人データを共有するための社会心理学的プロセスとモチベーションについて検討する。
- 参考スコア(独自算出の注目度): 14.4896557294262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of COVID-19 cases globally, many countries released digital
tools to mitigate the effects of the pandemic. In Germany the Robert Koch
Institute (RKI) published the Corona-Data-Donation-App, a virtual citizen
science (VCS) project, to establish an early warning system for the prediction
of potential COVID-19 hotspots using data from wearable devices. While work on
motivation for VCS projects in HCI often presents egoistic motives as
prevailing, there is little research on such motives in crises situations. In
this paper, we explore the socio-psychological processes and motivations to
share personal data during a pandemic. Our findings indicate that collective
motives dominated among app reviews (n=464) and in in-depth interviews (n=10).
We contribute implications for future VCS tools in times of crises that
highlight the importance of communication, transparency and responsibility.
- Abstract(参考訳): 世界的な新型コロナウイルスの感染拡大に伴い、多くの国がパンデミックの影響を軽減するためのデジタルツールをリリースした。
ドイツでは、Robert Koch Institute(RKI)が、仮想市民科学(VCS)プロジェクトであるCorona-Data-Donation-Appを公開した。
hciにおけるvcsプロジェクトのモチベーションに関する作業は、しばしば利己的なモチベーションを示すが、危機状況におけるそのようなモチベーションに関する研究はほとんどない。
本稿では,パンデミック時に個人データを共有するための社会心理学的プロセスとモチベーションについて検討する。
以上の結果から,アプリレビュー (n=464) とインフルインタビュー (n=10) において,共同モチベーションが支配的であった。
我々は、コミュニケーション、透明性、責任の重要性を強調する危機時に、将来のVCSツールに影響を及ぼす。
関連論文リスト
- Cutting through the noise to motivate people: A comprehensive analysis of COVID-19 social media posts de/motivating vaccination [1.1606619391009658]
新型コロナウイルス(COVID-19)のパンデミックは、医療情報システムの重大な弱点を露呈した。
ソーシャルメディア上の誤報が圧倒的に多いことは、人々に適切な予防措置をとらせ、予防接種を受けるよう動機付けるという課題を生み出した。
本研究では,ソーシャルメディアにおける科学的コミュニケーションと公衆のモチベーションについて論じる。
論文 参考訳(メタデータ) (2024-06-15T02:36:11Z) - When a crisis strikes: Emotion analysis and detection during COVID-19 [96.03869351276478]
感情をラベル付けした1万ツイートのCovidEmoを紹介します。
事前学習された言語モデルがドメインや危機をまたいでどのように一般化するかを検討する。
論文 参考訳(メタデータ) (2021-07-23T04:07:14Z) - ExcavatorCovid: Extracting Events and Relations from Text Corpora for
Temporal and Causal Analysis for COVID-19 [63.72766553648224]
excavatorcovidは、オープンソースのテキスト文書を取り込む機械読取システムである。
COVID19関連イベントとそれらの関係を抽出し、時間と因果分析グラフを構築する。
論文 参考訳(メタデータ) (2021-05-05T01:18:46Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
ソーシャルメディアプラットフォームは、新型コロナウイルス(COVID-19)に関する世界的な会話の手段として機能している。
本稿では,パンデミックを取り巻くソーシャルメディア会話の重要コンテンツと特徴の分析,マイニング,追跡のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-22T00:45:50Z) - Artificial Intelligence (AI) in Action: Addressing the COVID-19 Pandemic
with Natural Language Processing (NLP) [8.281080540533559]
自然言語処理は、新型コロナウイルスのパンデミックによって緊急に必要とされる多くの情報に対処するために適用することができる。
このレビューでは、約150のNLP研究と、新型コロナウイルスのパンデミックに対処する50以上のシステムとデータセットを調査します。
論文 参考訳(メタデータ) (2020-10-09T22:10:43Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - A Survey on Applications of Artificial Intelligence in Fighting Against
COVID-19 [75.84689958489724]
SARS-CoV-2ウイルスによる新型コロナウイルスのパンデミックは世界中で急速に広がり、世界的な感染拡大につながっている。
新型コロナウイルス対策の強力なツールとして、人工知能(AI)技術はこのパンデミックに対抗するために広く利用されている。
この調査では、新型コロナウイルス対策におけるAIテクノロジの既存および潜在的応用に関する包括的見解を、医療とAI研究者に提示する。
論文 参考訳(メタデータ) (2020-07-04T22:48:15Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
2019年の推計295億人が世界中でソーシャルメディアを利用している。
コロナウイルスの流行は、ソーシャルメディアの津波を引き起こした。
本稿では,Twitterから収集したデータに基づく大規模研究について述べる。
論文 参考訳(メタデータ) (2020-05-18T15:53:13Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z) - Psychometric Analysis and Coupling of Emotions Between State Bulletins
and Twitter in India during COVID-19 Infodemic [7.428097999824421]
新型コロナウイルスのインフォデミックは、パンデミックそのものよりも急速に広まっている。
ソーシャルメディアは情報の最大の源であるため、インフォデミックの管理には誤情報を緩和する必要がある。
Twitterだけでも、キュレートされたイベントページの利用が急激な45%増加した。
論文 参考訳(メタデータ) (2020-05-12T01:51:07Z) - A Study of Knowledge Sharing related to Covid-19 Pandemic in Stack
Overflow [69.5231754305538]
主に2020年2月と3月に投稿された464のStack Overflowに関する質問と、テキストマイニングの力を活用した調査。
事実、この世界的な危機はStack Overflowにおける活動の激化を招き、ほとんどのトピックは、Covid-19データ分析に対する強い関心を反映している。
論文 参考訳(メタデータ) (2020-04-18T08:19:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。