論文の概要: Relatively Lazy: Indoor-Outdoor Navigation Using Vision and GNSS
- arxiv url: http://arxiv.org/abs/2101.05107v1
- Date: Wed, 13 Jan 2021 14:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 07:53:29.302306
- Title: Relatively Lazy: Indoor-Outdoor Navigation Using Vision and GNSS
- Title(参考訳): 比較的怠け者: vision と gnss を用いた屋内外ナビゲーション
- Authors: Benjamin Congram and Timothy D. Barfoot
- Abstract要約: 相対ナビゲーションは、困難な環境での自律的な視覚ベースのパスに対する堅牢で効率的なソリューションである。
遅延マッピングと経路追跡誤差が必要とされるまで遅延推定は絶対状態を推定する必要がないことを示す。
自律走行経路繰り返し3.5kmのジョイント屋内ドア環境における実験を通して,実ロボットのアプローチを検証する。
- 参考スコア(独自算出の注目度): 14.39926267531322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual Teach and Repeat (VT&R) has shown relative navigation is a robust and
efficient solution for autonomous vision-based path following in difficult
environments. Adding additional absolute sensors such as Global Navigation
Satellite Systems (GNSS) has the potential to expand the domain of VT&R to
environments where the ability to visually localize is not guaranteed. Our
method of lazy mapping and delaying estimation until a path-tracking error is
needed avoids the need to estimate absolute states. As a result, map
optimization is not required and paths can be driven immediately after being
taught. We validate our approach on a real robot through an experiment in a
joint indoor-outdoor environment comprising 3.5km of autonomous route repeating
across a variety of lighting conditions. We achieve smooth error signals
throughout the runs despite large sections of dropout for each sensor.
- Abstract(参考訳): Visual Teach and Repeat (VT&R)は、困難な環境での自律的な視覚ベースのパスに対する、相対的なナビゲーションが堅牢で効率的なソリューションであることを示した。
グローバルナビゲーション衛星システム(gnss)のような追加の絶対センサーを追加することで、vt&rの領域を視覚的にローカライズする能力が保証されない環境に拡大する可能性がある。
経路追従誤差が必要とされるまで遅延写像と遅延推定の手法は絶対状態を推定する必要がない。
その結果、マップの最適化は不要であり、教えられた直後にパスを駆動することができる。
様々な照明条件にまたがる3.5kmの自律走行路を含む屋内・屋外共同環境で実験を行い,実際のロボットに対するアプローチを検証する。
センサ毎に大量のドロップアウトがあるにも関わらず,スムーズなエラー信号を実現する。
関連論文リスト
- IN-Sight: Interactive Navigation through Sight [20.184155117341497]
IN-Sightは自己監督型パスプランニングの新しいアプローチである。
可逆性のスコアを計算し、セマンティックマップに組み込む。
障害物を正確に回避するために、IN-Sightはローカルプランナーを使用している。
論文 参考訳(メタデータ) (2024-08-01T07:27:54Z) - TOP-Nav: Legged Navigation Integrating Terrain, Obstacle and Proprioception Estimation [5.484041860401147]
TOP-Navは、包括的パスプランナーとTerran認識、Obstacle回避、クローズループプロプライオセプションを統合した、新しい脚付きナビゲーションフレームワークである。
そこで,TOP-Navは,従来の知識の分布を超えた地形や乱れをロボットが扱えるように,オープンワールドナビゲーションを実現する。
論文 参考訳(メタデータ) (2024-04-23T17:42:45Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
本稿では、ポイントツーポイントナビゲーションタスクにおける飛行偏差に対処する新しい角度ナビゲーションパラダイムを提案する。
また、Adaptive Feature Enhance Module、Cross-knowledge Attention-guided Module、Robust Task-oriented Head Moduleを含むモデルを提案する。
論文 参考訳(メタデータ) (2024-02-04T08:41:20Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Unsupervised Visual Odometry and Action Integration for PointGoal
Navigation in Indoor Environment [14.363948775085534]
屋内環境におけるポイントゴールナビゲーションは、個人ロボットが特定の地点に向かうための基本的なタスクである。
GPS信号を使わずにPointGoalナビゲーションの精度を向上させるために、ビジュアル・オドメトリー(VO)を用い、教師なしで訓練された新しいアクション統合モジュール(AIM)を提案する。
実験により,提案システムは良好な結果が得られ,Gibsonデータセット上で部分的に教師付き学習アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2022-10-02T03:12:03Z) - WayFAST: Traversability Predictive Navigation for Field Robots [5.914664791853234]
本稿では,車輪付き移動ロボットの走行経路を予測するための自己教師型アプローチを提案する。
キーとなるインスピレーションは、キノダイナミックモデルを用いてローリングロボットのトラクションを推定できることです。
オンライントラクション推定に基づくトレーニングパイプラインは,他の手法よりもデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-03-22T22:02:03Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
複雑な自然環境や人工環境を高速で自律的に飛行するエンド・ツー・エンドのアプローチを提案する。
鍵となる原理は、雑音の知覚観測を直接、後退水平方向に無衝突軌道にマッピングすることである。
現実的なセンサノイズをシミュレートすることにより,シミュレーションから現実環境へのゼロショット転送を実現する。
論文 参考訳(メタデータ) (2021-10-11T09:43:11Z) - Indoor Point-to-Point Navigation with Deep Reinforcement Learning and
Ultra-wideband [1.6799377888527687]
移動障害や非視線発生はノイズや信頼性の低い信号を生成する。
深部強化学習(RL)で学習した電力効率のよい局所プランナーが,ノイズショートレンジ誘導システムの完全解法として頑健かつ弾力性を持つことを示す。
この結果から, 計算効率のよいエンドツーエンドポリシは, 堅牢でスケーラブルで, 最先端の低コストナビゲーションシステムを実現することができることがわかった。
論文 参考訳(メタデータ) (2020-11-18T12:30:36Z) - OmniSLAM: Omnidirectional Localization and Dense Mapping for
Wide-baseline Multi-camera Systems [88.41004332322788]
超広視野魚眼カメラ(FOV)を用いた広視野多視点ステレオ構成のための全方向位置決めと高密度マッピングシステムを提案する。
より実用的で正確な再構築のために、全方向深度推定のための改良された軽量のディープニューラルネットワークを導入する。
我々は全方位深度推定をビジュアル・オドメトリー(VO)に統合し,大域的整合性のためのループ閉鎖モジュールを付加する。
論文 参考訳(メタデータ) (2020-03-18T05:52:10Z) - BADGR: An Autonomous Self-Supervised Learning-Based Navigation System [158.6392333480079]
BadGRは、エンドツーエンドの学習ベースのモバイルロボットナビゲーションシステムである。
実際の環境で収集された、自己監督型のオフポリシーデータでトレーニングすることができる。
BadGRは、幾何学的に邪魔な障害物を伴って、現実世界の都市やオフロード環境をナビゲートすることができる。
論文 参考訳(メタデータ) (2020-02-13T18:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。