論文の概要: Uniform Error and Posterior Variance Bounds for Gaussian Process
Regression with Application to Safe Control
- arxiv url: http://arxiv.org/abs/2101.05328v1
- Date: Wed, 13 Jan 2021 20:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 08:03:02.175699
- Title: Uniform Error and Posterior Variance Bounds for Gaussian Process
Regression with Application to Safe Control
- Title(参考訳): ガウス過程回帰のための一様誤差と後変境界と安全制御への応用
- Authors: Armin Lederer, Jonas Umlauft, Sandra Hirche
- Abstract要約: 本論文では,Lipschitzを用いた新しい一様誤差と,大規模カーネルの後方分散関数の解析について述べる。
これらの結果は、未知の動的システムの安全な制御を保証するためにどのように使用できるかを示す。
- 参考スコア(独自算出の注目度): 11.42419064387567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In application areas where data generation is expensive, Gaussian processes
are a preferred supervised learning model due to their high data-efficiency.
Particularly in model-based control, Gaussian processes allow the derivation of
performance guarantees using probabilistic model error bounds. To make these
approaches applicable in practice, two open challenges must be solved i)
Existing error bounds rely on prior knowledge, which might not be available for
many real-world tasks. (ii) The relationship between training data and the
posterior variance, which mainly drives the error bound, is not well understood
and prevents the asymptotic analysis. This article addresses these issues by
presenting a novel uniform error bound using Lipschitz continuity and an
analysis of the posterior variance function for a large class of kernels.
Additionally, we show how these results can be used to guarantee safe control
of an unknown dynamical system and provide numerical illustration examples.
- Abstract(参考訳): データ生成が高価であるアプリケーション領域では、ガウスプロセスはデータ効率が高いため、教師あり学習モデルが望ましい。
特にモデルベース制御において、ガウス過程は確率的モデル誤差境界を用いた性能保証の導出を可能にする。
これらのアプローチを実際に適用するには、2つのオープンな課題を解決しなければなりません i) 既存のエラー境界は、多くの現実世界のタスクでは利用できない、事前の知識に依存します。
(ii)主にエラーバウンドを駆動するトレーニングデータと後方分散の関係はよく理解されておらず、漸近解析を妨げている。
本稿では、リプシッツ連続性を用いた新しい一様誤差と、大規模カーネルの後方分散関数の解析により、これらの問題に対処する。
さらに,未知力学系の安全な制御を保証するためにこれらの結果をどのように利用できるかを示し,数値的な例を示す。
関連論文リスト
- Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning [1.8175282137722093]
科学機械学習(SciML)における不確実性(UQ)は、SciMLの強力な予測力と、学習したモデルの信頼性を定量化する方法を組み合わせる。
我々は、SciMLと粘性ハミルトン-ヤコビ偏微分方程式(HJ PDE)で生じるいくつかのベイズ推論問題の間の新しい理論的関係を確立することにより、UQ問題に対する新しい解釈を提供する。
我々はモデル予測を継続的に更新する際の計算上の利点を提供する新しいRacatiベースの方法論を開発した。
論文 参考訳(メタデータ) (2024-04-12T20:54:01Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
本稿では,深いガウス過程に対するニューラル演算子変分推論(NOVI)を提案する。
NOVIは、ニューラルジェネレータを使用してサンプリング装置を取得し、生成された分布と真の後部の間のL2空間における正規化スタインの離散性を最小化する。
提案手法が提案するバイアスは定数で発散を乗算することで制御可能であることを示す。
論文 参考訳(メタデータ) (2023-09-22T06:56:35Z) - Episodic Gaussian Process-Based Learning Control with Vanishing Tracking
Errors [10.627020714408445]
本稿では,任意の追跡精度を保証するために,GPモデル学習のためのエピソード手法を開発する。
導出理論の有効性はいくつかのシミュレーションで示されている。
論文 参考訳(メタデータ) (2023-07-10T08:43:28Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
ガウスのプロセスはデータセットのサイズとともに違法にスケールする。
多くの近似法が開発されており、必然的に近似誤差を導入している。
この余分な不確実性の原因は、計算が限られているため、近似後部を使用すると完全に無視される。
本研究では,観測された有限個のデータと有限個の計算量の両方から生じる組合せ不確実性を一貫した推定を行う手法の開発を行う。
論文 参考訳(メタデータ) (2022-05-30T22:16:25Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
マルチフィデリティモデリングは、少量の正確なデータしか入手できない場合でも、正確な推測を可能にする。
高忠実度モデルと1つ以上の低忠実度モデルを組み合わせることで、多忠実度法は興味のある量の正確な予測を行うことができる。
本稿では,回転多要素ガウス過程の回帰に基づく新しい次元削減フレームワークとベイズ能動学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-11T01:20:35Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
未知のハイパーパラメータを持つ設定において、ロバストなガウス過程の均一なエラー境界を導入する。
提案手法はハイパーパラメータの空間における信頼領域を計算し,モデル誤差に対する確率的上限を求める。
実験により、バニラ法やベイズ法よりもバニラ法の方がはるかに優れていることが示された。
論文 参考訳(メタデータ) (2021-09-06T17:10:01Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。