Parkinson's Disease Diagnosis Using Deep Learning
- URL: http://arxiv.org/abs/2101.05631v1
- Date: Sun, 3 Jan 2021 18:39:25 GMT
- Title: Parkinson's Disease Diagnosis Using Deep Learning
- Authors: Mohamad Alissa
- Abstract summary: Parkinson's Disease (PD) is a chronic, degenerative disorder which leads to a range of motor and cognitive symptoms.
This project aims to automate the PD diagnosis process using deep learning, Recursive Neural Networks (RNN) and Convolutional Neural Networks (CNN)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parkinson's Disease (PD) is a chronic, degenerative disorder which leads to a
range of motor and cognitive symptoms. PD diagnosis is a challenging task since
its symptoms are very similar to other diseases such as normal ageing and
essential tremor. Much research has been applied to diagnosing this disease.
This project aims to automate the PD diagnosis process using deep learning,
Recursive Neural Networks (RNN) and Convolutional Neural Networks (CNN), to
differentiate between healthy and PD patients. Besides that, since different
datasets may capture different aspects of this disease, this project aims to
explore which PD test is more effective in the discrimination process by
analysing different imaging and movement datasets (notably cube and spiral
pentagon datasets). In addition, this project evaluates which dataset type,
imaging or time series, is more effective in diagnosing PD.
Related papers
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Predicting Parkinson's disease evolution using deep learning [1.4610685586329806]
Parkinson's disease is a neurological condition that occurs in nearly 1% of the world's population.
There is not a single blood test or biomarker available to diagnose Parkinson's disease.
No AI tools have been designed to identify the stage of progression.
arXiv Detail & Related papers (2023-12-28T10:30:54Z) - 3D Transformer based on deformable patch location for differential
diagnosis between Alzheimer's disease and Frontotemporal dementia [0.0]
Alzheimer's disease and Frontotemporal dementia are common types of neurodegenerative disorders that present overlapping clinical symptoms.
We present a novel 3D transformer-based architecture using a deformable patch location module to improve the differential diagnosis of Alzheimer's disease and Frontotemporal dementia.
arXiv Detail & Related papers (2023-09-06T17:42:18Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
This study presents a deep learning-based model for the diagnosis of Parkinson's disease (PD) using resting state electroencephalogram (EEG) signal.
The model is designed using a hybrid model, consists of convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU) and attention mechanism.
The results show that the proposed model can accurately diagnose PD with high performance on both the training and hold-out datasets.
arXiv Detail & Related papers (2023-08-14T20:06:19Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
We analyze the influence of replacing a DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace.
Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
arXiv Detail & Related papers (2022-11-12T23:28:54Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - Machine learning for the diagnosis of Parkinson's disease: A systematic
review [15.463800489731373]
We conducted a systematic literature review of studies published until February 14, 2020, using the PubMed and IEEE Xplore databases.
A total of 209 studies were included, extracted for relevant information and presented in this systematic review.
These studies demonstrate a high potential for adaptation of machine learning methods and novel biomarkers in clinical decision making.
arXiv Detail & Related papers (2020-10-13T01:14:04Z) - Deep Learning Based Early Diagnostics of Parkinsons Disease [0.0]
This study proposes to use The deep learning method to realize the diagnosis of Parkinson's disease, multiple system atrophy, and healthy people.
The focus of this experiment is to improve the existing neural network so that it can obtain good results in medical image recognition and diagnosis.
arXiv Detail & Related papers (2020-08-04T19:50:52Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.