論文の概要: Deep Learning Models for Calculation of Cardiothoracic Ratio from Chest
Radiographs for Assisted Diagnosis of Cardiomegaly
- arxiv url: http://arxiv.org/abs/2101.07606v1
- Date: Tue, 19 Jan 2021 13:09:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 03:15:26.054664
- Title: Deep Learning Models for Calculation of Cardiothoracic Ratio from Chest
Radiographs for Assisted Diagnosis of Cardiomegaly
- Title(参考訳): 胸部X線写真からの心胸壁比算出のための深層学習モデルによる心肥大診断
- Authors: Tanveer Gupte, Mrunmai Niljikar, Manish Gawali, Viraj Kulkarni, Amit
Kharat, Aniruddha Pant
- Abstract要約: 本研究では,胸部X線写真から心臓胸部比を算出し,心筋の存在を検出する自動法を提案する。
結束箱を用いたx線画像の心臓と胸部領域を画定する2つのモデルを開発し,その出力を用いて心拍数を算出した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an automated method based on deep learning to compute the
cardiothoracic ratio and detect the presence of cardiomegaly from chest
radiographs. We develop two separate models to demarcate the heart and chest
regions in an X-ray image using bounding boxes and use their outputs to
calculate the cardiothoracic ratio. We obtain a sensitivity of 0.96 at a
specificity of 0.81 with a mean absolute error of 0.0209 on a held-out test
dataset and a sensitivity of 0.84 at a specificity of 0.97 with a mean absolute
error of 0.018 on an independent dataset from a different hospital. We also
compare three different segmentation model architectures for the proposed
method and observe that Attention U-Net yields better results than SE-Resnext
U-Net and EfficientNet U-Net. By providing a numeric measurement of the
cardiothoracic ratio, we hope to mitigate human subjectivity arising out of
visual assessment in the detection of cardiomegaly.
- Abstract(参考訳): 本稿では,胸部X線写真から心内膜像の存在を検出するための深層学習に基づく自動手法を提案する。
結束箱を用いたx線画像の心臓と胸部領域を画定する2つのモデルを開発し,その出力を用いて心拍数を算出した。
保持試験データセットで平均絶対誤差0.0209、特定度0.097で0.08、別病院から独立したデータセットで平均絶対誤差0.018の感度を0.96とする。
また,提案手法の3つのセグメンテーションモデルアーキテクチャを比較し,SE-Resnext U-NetやEfficientNet U-Netよりも優れた結果が得られることを示した。
心エコー比を数値的に測定することで,視覚的評価から生じるヒトの主観性を軽減することが期待されている。
- 全文 参考訳へのリンク
関連論文リスト
- Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Towards Clinical Practice: Design and Implementation of Convolutional
Neural Network-Based Assistive Diagnosis System for COVID-19 Case Detection
from Chest X-Ray Images [0.0]
本研究では,胸部X線(CXR)画像から新型コロナウイルスを検出するために,畳み込みニューラルネットワーク(CNN)ベースのCarebot Covidアプリの現実的な実装を提案する。
本研究では,DenseNetとResNetアーキテクチャに基づくディープラーニングモデルを用いて,精度0.981のCXR画像からSARS-CoV-2を検出し,0.962のリコールと0.993のAPを再現した。
論文 参考訳(メタデータ) (2022-03-20T16:44:20Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - A Deep Learning Based Workflow for Detection of Lung Nodules With Chest
Radiograph [0.0]
CXRから肺領域を識別するセグメンテーションモデルを構築し,それを16個のパッチに分割した。
これらのラベル付きパッチを使用して、ディープニューラルネットワーク(DNN)モデルを微調整し、パッチをポジティブまたはネガティブに分類する。
論文 参考訳(メタデータ) (2021-12-19T16:19:46Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - CNN Based Segmentation of Infarcted Regions in Acute Cerebral Stroke
Patients From Computed Tomography Perfusion Imaging [2.1626699124055504]
血栓溶解療法は脳損傷を軽減できるが、治療窓は狭い。
Computed To Perfusion Imagingは、脳卒中患者の一般的な一次評価ツールです。
完全自動化された4次元畳み込みニューラルネットワークに基づくセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2021-04-07T09:09:13Z) - Nested-block self-attention for robust radiotherapy planning
segmentation [3.2541650155921142]
深層畳み込みネットワークは、頭頸部(HN)臓器のリスクセグメンテーション(OAR)において広く研究されている。
定期的な臨床治療計画のためのそれらの使用は、イメージングアーティファクトへの堅牢性の欠如、CT上の低い軟組織コントラスト、および異常な解剖の存在によって制限される。
我々は,任意の畳み込みネットワークと組み合わせることができる計算効率の良いネストブロック自己アテンション法(NBSA)を開発した。
論文 参考訳(メタデータ) (2021-02-26T15:28:47Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
我々は,ICAから冠状動脈を抽出する深層学習による自動アルゴリズムの開発を目指している。
本研究では, マルチインプットとマルチスケール(MIMS)のU-Netを2段階の繰り返し訓練戦略として提案した。
実験の結果,提案手法は平均diceスコア 0.8329, 平均感度 0.8281, 平均特異度 0.9979 となり, 73例から294 icasを得た。
論文 参考訳(メタデータ) (2021-01-25T01:48:27Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
本研究では,異なる畳み込みアーキテクチャの後期融合に基づく深層学習手法を提案する。
公開胸部x線画像と機関アーカイブを組み合わせたトレーニングデータセットを4つ構築した。
4つの異なるディープラーニングアーキテクチャをトレーニングし、それらのアウトプットとレイトフュージョン戦略を組み合わせることで、統一されたツールを得ました。
論文 参考訳(メタデータ) (2020-12-23T14:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。