論文の概要: Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions
- arxiv url: http://arxiv.org/abs/2407.04581v1
- Date: Fri, 5 Jul 2024 15:23:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:01:09.257366
- Title: Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions
- Title(参考訳): 衛星地上ネットワーク統合のための大規模言語モデルの活用:最近の進歩と今後の方向性
- Authors: Shumaila Javaid, Ruhul Amin Khalil, Nasir Saeed, Bin He, Mohamed-Slim Alouini,
- Abstract要約: 統合衛星、航空、地上ネットワーク(ISATN)は多様な通信技術の洗練された収束を表現している。
本稿では,Large Language Models (LLM) を ISATN に統合するトランスフォーメーションの可能性について検討する。
- 参考スコア(独自算出の注目度): 47.791246017237
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies to ensure seamless connectivity across different altitudes and platforms. This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs, leveraging advanced Artificial Intelligence (AI) and Machine Learning (ML) capabilities to enhance these networks. We outline the current architecture of ISATNs and highlight the significant role LLMs can play in optimizing data flow, signal processing, and network management to advance 5G/6G communication technologies through advanced predictive algorithms and real-time decision-making. A comprehensive analysis of ISATN components is conducted, assessing how LLMs can effectively address traditional data transmission and processing bottlenecks. The paper delves into the network management challenges within ISATNs, emphasizing the necessity for sophisticated resource allocation strategies, traffic routing, and security management to ensure seamless connectivity and optimal performance under varying conditions. Furthermore, we examine the technical challenges and limitations associated with integrating LLMs into ISATNs, such as data integration for LLM processing, scalability issues, latency in decision-making processes, and the design of robust, fault-tolerant systems. The study also identifies key future research directions for fully harnessing LLM capabilities in ISATNs, which is crucial for enhancing network reliability, optimizing performance, and achieving a truly interconnected and intelligent global network system.
- Abstract(参考訳): 統合衛星、航空、地上ネットワーク(ISATN)は、様々な高度とプラットフォーム間のシームレスな接続を確保するために、多様な通信技術の洗練された収束を表現している。
本稿では,Large Language Models(LLM)をISATNに統合し,AI(Advanced Artificial Intelligence)と機械学習(ML)機能を活用してこれらのネットワークを拡張可能な変換可能性について検討する。
我々はISATNの現在のアーキテクチャを概説し、LLMがデータフロー、信号処理、ネットワーク管理を最適化し、先進的な予測アルゴリズムとリアルタイム意思決定を通じて5G/6G通信技術の進歩に果たす重要な役割を強調した。
ISATN コンポーネントの包括的な分析を行い,従来のデータ転送や処理のボトルネックに対して LLM が効果的に対処できるかを評価する。
本論文は、ISATNにおけるネットワーク管理の課題を考察し、様々な条件下でのシームレスな接続性と最適な性能を確保するために、高度なリソース割り当て戦略、トラフィックルーティング、セキュリティ管理の必要性を強調した。
さらに,LLM処理のデータ統合,スケーラビリティ問題,意思決定プロセスのレイテンシ,堅牢でフォールトトレラントなシステムの設計など,ILSNにLLMを統合する際の技術的課題と限界について検討する。
この研究は、ネットワーク信頼性の向上、性能の最適化、真に相互接続されたインテリジェントなグローバルネットワークシステムの実現に不可欠であるISATNにおけるLLM機能を完全に活用するための重要な研究方向性を明らかにした。
関連論文リスト
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - Distributed satellite information networks: Architecture, enabling technologies, and trends [56.747473208256174]
分散衛星情報ネットワーク(DSIN)は、多様な衛星システム間での情報ギャップを埋める革新的なアーキテクチャとして登場した。
この調査はまず、DSINの革新的なネットワークアーキテクチャに関する深い議論を提供する。
DSINは、ネットワークの不均一性、予測不可能なチャネルダイナミクス、スパースリソース、分散コラボレーションフレームワークといった課題に直面している。
論文 参考訳(メタデータ) (2024-12-17T06:44:05Z) - A Survey on Large Language Models for Communication, Network, and Service Management: Application Insights, Challenges, and Future Directions [37.427638898804055]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおける非並列性のため、大きな注目を集めている。
本研究では,モバイルネットワークや関連技術,車両ネットワーク,クラウドネットワーク,フォグ/エッジネットワークなど,さまざまな通信ネットワークドメインを対象としたLCMの統合について検討する。
論文 参考訳(メタデータ) (2024-12-16T20:01:36Z) - On-Air Deep Learning Integrated Semantic Inference Models for Enhanced Earth Observation Satellite Networks [28.69148416385582]
ドメイン適応型大規模言語モデル(LLM)は、生および処理されたEOデータの統合を可能にするソリューションを提供する。
本研究は,高度EOシステムにおける意味推論と深層学習の徹底的な検討を行う。
データ伝送効率を向上させるために設計されたEO衛星ネットワークにおけるセマンティック通信のための革新的なアーキテクチャを提供する。
論文 参考訳(メタデータ) (2024-09-23T17:42:05Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - PLLM-CS: Pre-trained Large Language Model (LLM) for Cyber Threat Detection in Satellite Networks [0.20971479389679332]
衛星ネットワークは、様々な重要なインフラのための通信サービスを促進する上で不可欠である。
これらのシステムの一部は、効果的な侵入検知システムがないために脆弱である。
サイバーセキュリティのための事前学習型大規模言語モデルを提案する。
論文 参考訳(メタデータ) (2024-05-09T00:00:27Z) - Harnessing Scalable Transactional Stream Processing for Managing Large
Language Models [Vision] [4.553891255178496]
大規模言語モデル(LLM)は、広範囲のアプリケーションにまたがって素晴らしいパフォーマンスを示している。
本稿では,トランザクションストリーム処理(TSP)とLLM管理を統合する革命的フレームワークであるTStreamLLMを紹介する。
リアルタイムの患者モニタリングやインテリジェントなトラフィック管理といった実践的なユースケースを通じて、その可能性を示す。
論文 参考訳(メタデータ) (2023-07-17T04:01:02Z) - Satellite Based Computing Networks with Federated Learning [30.090106801185886]
人工知能(AI)によって強化された第6世代(6G)モバイルシステムである無線通信の新世代が、かなりの研究関心を集めている。
6Gの様々な候補技術の中で、低軌道(LEO)衛星はユビキタス無線アクセスの特徴をアピールしている。
知的適応学習を備えた大規模相互接続デバイスをサポートし,SatComにおける高価なトラフィックを削減するため,LEOベースの衛星通信ネットワークにおけるフェデレーション学習(FL)を提案する。
論文 参考訳(メタデータ) (2021-11-20T13:24:23Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
この研究は、AI、その多様なサブフィールド、そして最先端のアルゴリズムの概要を提供する。
さまざまな衛星通信分野へのAIの適用は、ビームホッピング、アンチジャミング、ネットワークトラフィック予測、チャネルモデリング、テレメトリマイニング、電離圏シンチレーション検出、干渉管理、リモートセンシング、行動モデリング、スペースエアグラウンド統合、エネルギー管理など、優れた可能性を実証しています。
論文 参考訳(メタデータ) (2021-01-25T13:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。