論文の概要: Privacy Information Classification: A Hybrid Approach
- arxiv url: http://arxiv.org/abs/2101.11574v1
- Date: Wed, 27 Jan 2021 18:03:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 00:30:15.398067
- Title: Privacy Information Classification: A Hybrid Approach
- Title(参考訳): プライバシ情報の分類: ハイブリッドアプローチ
- Authors: Jiaqi Wu, Weihua Li, Quan Bai, Takayuki Ito, Ahmed Moustafa
- Abstract要約: 本研究は,OSNからプライバシ情報を検出し,分類するためのハイブリッドプライバシ分類手法を提案する。
提案したハイブリッドアプローチは、プライバシー関連の情報抽出にディープラーニングモデルとオントロジーベースのモデルの両方を用いる。
- 参考スコア(独自算出の注目度): 9.642559585173517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A large amount of information has been published to online social networks
every day. Individual privacy-related information is also possibly disclosed
unconsciously by the end-users. Identifying privacy-related data and protecting
the online social network users from privacy leakage turn out to be
significant. Under such a motivation, this study aims to propose and develop a
hybrid privacy classification approach to detect and classify privacy
information from OSNs. The proposed hybrid approach employs both deep learning
models and ontology-based models for privacy-related information extraction.
Extensive experiments are conducted to validate the proposed hybrid approach,
and the empirical results demonstrate its superiority in assisting online
social network users against privacy leakage.
- Abstract(参考訳): 毎日大量の情報がオンラインソーシャルネットワークに公開されています。
個人のプライバシー関連の情報は、エンドユーザによって無意識に開示されることもある。
プライバシー関連のデータを識別し、オンラインソーシャルネットワークのユーザーをプライバシーの漏洩から保護することが重要になった。
そこで本研究では,OSNからプライバシー情報を検出・分類するハイブリッドプライバシー分類手法を提案する。
提案されたハイブリッドアプローチは、プライバシー関連の情報抽出にディープラーニングモデルとオントロジベースのモデルの両方を用いる。
提案したハイブリッドアプローチを検証するため,大規模な実験を行い,オンラインソーシャルネットワーク利用者のプライバシー侵害対策における優位性を実証した。
関連論文リスト
- Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Considerations for Differentially Private Learning with Large-Scale
Public Pretraining [58.75893136929649]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - Visual Privacy Protection Based on Type-I Adversarial Attack [89.37827033872847]
本稿では,データの視覚的プライバシを保護するために,敵攻撃に基づく手法を提案する。
具体的には、DNNによって正確に予測されながら、プライベートデータの視覚情報を暗号化する。
顔認識タスクにおける実験結果から,提案手法は顔画像の視覚情報を深く隠蔽できることが示された。
論文 参考訳(メタデータ) (2022-09-30T08:23:26Z) - Momentum Gradient Descent Federated Learning with Local Differential
Privacy [10.60240656423935]
ビッグデータの時代、個人情報のプライバシーはより顕著になった。
本稿では,機械学習モデルの性能向上のために,フェデレーション学習と局所差分プライバシーをモーメント勾配勾配下で統合することを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:30:38Z) - Privacy-Preserving Distributed Expectation Maximization for Gaussian
Mixture Model using Subspace Perturbation [4.2698418800007865]
フェデレーション学習は、プライベートデータの送信を許可せず、中間更新のみを許可するため、プライバシー上の懸念によって動機付けられている。
我々は、各ステップの更新を安全に計算できる、完全に分散化されたプライバシ保存ソリューションを提案する。
数値検証により,提案手法は,精度とプライバシの両面において,既存手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-09-16T09:58:03Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - The Privacy Onion Effect: Memorization is Relative [76.46529413546725]
もっとも脆弱な外接点の"層"を取り除くことで、前もって安全だった点の新たな層を同じ攻撃に晒す。
これは、機械学習のようなプライバシー強化技術が、他のユーザーのプライバシーに悪影響を及ぼす可能性を示唆している。
論文 参考訳(メタデータ) (2022-06-21T15:25:56Z) - Swarm Differential Privacy for Purpose Driven
Data-Information-Knowledge-Wisdom Architecture [2.38142799291692]
データ情報知識(DIKW)の広い視野のプライバシー保護について検討する。
差分プライバシーは効果的なデータプライバシーアプローチであることが判明したため、DIKWドメインの観点から見ていきます。
Swarm Intelligenceは、差分プライバシーで使用されるDIKW内のアイテムの数を効果的に最適化し、削減できます。
論文 参考訳(メタデータ) (2021-05-09T23:09:07Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z) - Learning With Differential Privacy [3.618133010429131]
異なるプライバシーは、漏洩に対する適切な保護を約束して救助にやってくる。
データの収集時にランダムな応答技術を使用し、より優れたユーティリティで強力なプライバシを保証します。
論文 参考訳(メタデータ) (2020-06-10T02:04:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。