論文の概要: When Graph Convolution Meets Double Attention: Online Privacy Disclosure Detection with Multi-Label Text Classification
- arxiv url: http://arxiv.org/abs/2311.15917v2
- Date: Wed, 20 Dec 2023 08:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 15:42:08.075656
- Title: When Graph Convolution Meets Double Attention: Online Privacy Disclosure Detection with Multi-Label Text Classification
- Title(参考訳): グラフ畳み込みと二重注意:複数ラベルテキスト分類によるオンラインプライバシー開示検出
- Authors: Zhanbo Liang, Jie Guo, Weidong Qiu, Zheng Huang, Shujun Li,
- Abstract要約: 影響を受ける人々やオンラインプラットフォームに警告する上で、このような望ましくないプライバシー開示を検出することが重要です。
本稿では,多ラベルテキスト分類問題としてプライバシ開示検出をモデル化する。
オンラインプライバシ開示を検出するMLTC分類器を構築するために,新たなプライバシ開示検出モデルを提案する。
- 参考スコア(独自算出の注目度): 6.700420953065072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of Web 2.0 platforms such as online social media, people's private information, such as their location, occupation and even family information, is often inadvertently disclosed through online discussions. Therefore, it is important to detect such unwanted privacy disclosures to help alert people affected and the online platform. In this paper, privacy disclosure detection is modeled as a multi-label text classification (MLTC) problem, and a new privacy disclosure detection model is proposed to construct an MLTC classifier for detecting online privacy disclosures. This classifier takes an online post as the input and outputs multiple labels, each reflecting a possible privacy disclosure. The proposed presentation method combines three different sources of information, the input text itself, the label-to-text correlation and the label-to-label correlation. A double-attention mechanism is used to combine the first two sources of information, and a graph convolutional network (GCN) is employed to extract the third source of information that is then used to help fuse features extracted from the first two sources of information. Our extensive experimental results, obtained on a public dataset of privacy-disclosing posts on Twitter, demonstrated that our proposed privacy disclosure detection method significantly and consistently outperformed other state-of-the-art methods in terms of all key performance indicators.
- Abstract(参考訳): オンラインソーシャルメディアなどのWeb 2.0プラットフォームが台頭し、その場所、職業、さらには家族の情報といった人々の個人情報が、オンラインの議論を通じて不注意に開示されることがしばしばある。
したがって、影響を受ける人々やオンラインプラットフォームに警告する上で、そのような望ましくないプライバシー開示を検出することが重要である。
本稿では,マルチラベルテキスト分類(MLTC)問題としてプライバシ開示検出をモデル化し,オンラインプライバシ開示を検出するためのMLTC分類器を構築するために,新たなプライバシ開示検出モデルを提案する。
この分類器はオンライン投稿を入力として受け取り、複数のラベルを出力する。
提案手法は,入力テキスト自体,ラベルとテキストの相関,ラベルとラベルの相関の3つの異なる情報源を組み合わせる。
最初の2つの情報ソースを結合するために二重アテンション機構を使用し、最初の2つの情報ソースから抽出された特徴を融合するために使用される第3の情報ソースを抽出するためにグラフ畳み込みネットワーク(GCN)を用いる。
Twitter上のプライバシー開示投稿の公開データセットで得られた大規模な実験結果は、提案したプライバシー開示検出手法が、すべての重要なパフォーマンス指標の観点から、他の最先端手法よりも大幅に、一貫して優れていたことを実証した。
関連論文リスト
- Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - Unveiling Privacy Vulnerabilities: Investigating the Role of Structure in Graph Data [17.11821761700748]
本研究では,ネットワーク構造から生じるプライバシーリスクに対する理解と保護を推し進める。
我々は,ネットワーク構造によるプライバシー漏洩の可能性を評価するための重要なツールとして機能する,新しいグラフプライベート属性推論攻撃を開発した。
攻撃モデルはユーザのプライバシに重大な脅威を与え,グラフデータ公開手法は最適なプライバシとユーティリティのトレードオフを実現する。
論文 参考訳(メタデータ) (2024-07-26T07:40:54Z) - Adaptive Differentially Private Structural Entropy Minimization for Unsupervised Social Event Detection [29.13690542566747]
社会的事象の検出は、意見分析、社会的安全、意思決定など、多くの分野で重要である。
現在のほとんどのメソッドは監視されており、大量のデータにアクセスする必要があります。
プライバシを優先する,教師なしのソーシャルイベント検出手法であるADP-SEMEventを提案する。
論文 参考訳(メタデータ) (2024-07-23T11:19:22Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Statistical Feature-based Personal Information Detection in Mobile
Network Traffic [13.568975395946433]
本稿では、交通における個人情報の発生パターンを統計的に表現するために、個人情報の統計的特徴を設計する。
検出器は機械学習アルゴリズムに基づいてトレーニングされ、同様のパターンで潜在的な個人情報を検出する。
われわれの知る限りでは、統計的特徴に基づいて個人情報を検出するのはこれが初めてだ。
論文 参考訳(メタデータ) (2021-12-23T04:01:16Z) - A Multi-input Multi-output Transformer-based Hybrid Neural Network for
Multi-class Privacy Disclosure Detection [3.04585143845864]
本稿では,伝達学習,言語学,メタデータを用いて隠れパターンを学習するマルチインプット・マルチアウトプットハイブリッドニューラルネットワークを提案する。
我々は,5,400のツイートを含む人間の注釈付き真実データセットを用いて,我々のモデルを訓練し,評価した。
論文 参考訳(メタデータ) (2021-08-19T03:58:49Z) - Privacy Information Classification: A Hybrid Approach [9.642559585173517]
本研究は,OSNからプライバシ情報を検出し,分類するためのハイブリッドプライバシ分類手法を提案する。
提案したハイブリッドアプローチは、プライバシー関連の情報抽出にディープラーニングモデルとオントロジーベースのモデルの両方を用いる。
論文 参考訳(メタデータ) (2021-01-27T18:03:18Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
視覚データに流出した個人情報を個人が制限できる技術について検討する。
我々はこの問題を新しい画像難読化フレームワークで解決する。
提案手法では,元の入力画像に忠実な難読化画像を生成するとともに,非難読化画像に対して6.2$times$(または0.85bits)の不確実性を増大させる。
論文 参考訳(メタデータ) (2020-05-20T19:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。