論文の概要: Tracking Short-Term Temporal Linguistic Dynamics to Characterize
Candidate Therapeutics for COVID-19 in the CORD-19 Corpus
- arxiv url: http://arxiv.org/abs/2101.11710v1
- Date: Sat, 9 Jan 2021 23:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-09 07:37:15.597896
- Title: Tracking Short-Term Temporal Linguistic Dynamics to Characterize
Candidate Therapeutics for COVID-19 in the CORD-19 Corpus
- Title(参考訳): CORD-19コーパスにおける候補治療の短期的言語動態の追跡
- Authors: James Powell and Kari Sentz
- Abstract要約: cord-19コーパスは、covid-19に関連する科学文献の集合体である。
本研究は,CORD-19コーパスの経時的症例と薬物補充試験で同定された一連の治療薬の交叉について検討し,経時的変化の発見と測定が可能かを検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific literature tends to grow as a function of funding and interest in
a given field. Mining such literature can reveal trends that may not be
immediately apparent. The CORD-19 corpus represents a growing corpus of
scientific literature associated with COVID-19. We examined the intersection of
a set of candidate therapeutics identified in a drug-repurposing study with
temporal instances of the CORD-19 corpus to determine if it was possible to
find and measure changes associated with them over time. We propose that the
techniques we used could form the basis of a tool to pre-screen new candidate
therapeutics early in the research process.
- Abstract(参考訳): 科学文献は、特定の分野への資金提供や興味の関数として成長しがちである。
そのような文献の採掘は、すぐには明らかでない傾向を明らかにすることができる。
cord-19コーパスは、covid-19に関連する科学文献の集合体である。
本研究は,CORD-19コーパスの経時的症例と薬物補充試験で同定された一連の治療薬の交叉について検討し,経時的変化の発見と測定が可能かを検討した。
研究の早い段階で新規候補治療法の事前スクリーニングを行うためのツールの基礎となる手法を提案する。
関連論文リスト
- CorpusBrain++: A Continual Generative Pre-Training Framework for
Knowledge-Intensive Language Tasks [111.13988772503511]
知識集約型言語タスク(KILT)は通常、特定の回答を生成するために、信頼できるコーパス(例えばウィキペディア)から関連文書を取得する必要がある。
近年,コーパスブライン(CorpsBrain)と呼ばれるKILTの事前学習型生成検索モデルが提案され,新しい最先端検索性能に到達した。
論文 参考訳(メタデータ) (2024-02-26T17:35:44Z) - De-identification of clinical free text using natural language
processing: A systematic review of current approaches [48.343430343213896]
自然言語処理は、その非識別プロセスの自動化の可能性を繰り返し示してきた。
本研究の目的は,過去13年間に臨床自由テキストの非識別化が進展したことを示す体系的な証拠を提供することである。
論文 参考訳(メタデータ) (2023-11-28T13:20:41Z) - Exploring the evolution of research topics during the COVID-19 pandemic [3.234641429290768]
我々は,CORD-19 Topic Visualizer (CORToViz)について紹介する。
提案手法は,最新の技術(大規模言語モデルを含む)の選択と時間的トピックマイニングのための抽出技術に基づく。
トピックインスペクションはインタラクティブなダッシュボードによってサポートされており、単語クラウドやトピックトレンドを時系列として高速でワンクリックで可視化することができる。
論文 参考訳(メタデータ) (2023-10-05T22:16:41Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Diachronic Text Mining Investigation of Therapeutic Candidates for
COVID-19 [0.0]
我々は、短時間のダイアクロニックテキストマイニングを用いて、コクレンスを同定し、潜在的な候補治療の挙動を分析する。
その結果,CORD-19コーパスの時間的事例では,少なくとも25%が検出された。
検出したパターンは,ダイアクロニックテキストマイニングによる薬物再資源化活動の追跡に有用であることを示す。
論文 参考訳(メタデータ) (2021-10-26T19:20:26Z) - Prioritization of COVID-19-related literature via unsupervised keyphrase
extraction and document representation learning [1.8374319565577157]
新型コロナウイルス(COVID-19)のパンデミックは、手作業で適切な時間枠で検査や研究が不可能な、新しい科学文献の波を引き起こした。
現在の機械学習手法では、類似した文書が互いに近接しているベクトル空間にそのような文献を投影する。
本システムでは, ウイルス関連文献の現在の体は, 教師なしキーフレーズ抽出を用いて注釈付けされている。
このソリューションは、対話型検索、用語ランキング、潜在的に興味深い文献の探索が可能なWebサーバを通じてアクセス可能である。
論文 参考訳(メタデータ) (2021-10-17T17:35:09Z) - Domain-Specific Pretraining for Vertical Search: Case Study on
Biomedical Literature [67.4680600632232]
自己教師型学習は、アノテーションのボトルネックを克服するための有望な方向として現れました。
本稿では,ドメイン固有の事前学習に基づく垂直探索手法を提案する。
我々のシステムはPubMed上で何千万もの記事にスケールでき、Microsoft Biomedical Searchとしてデプロイされている。
論文 参考訳(メタデータ) (2021-06-25T01:02:55Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - A New Screening Method for COVID-19 based on Ocular Feature Recognition
by Machine Learning Tools [66.20818586629278]
コロナウイルス感染症2019(COVID-19)は、数百万人に影響している。
一般的なCCDやCMOSカメラで撮影された視線領域の画像を分析する新しいスクリーニング手法は、新型コロナウイルスの急激なリスクスクリーニングを確実に実現する可能性がある。
論文 参考訳(メタデータ) (2020-09-04T00:50:27Z) - Navigating the landscape of COVID-19 research through literature
analysis: A bird's eye view [11.362549790802483]
我々は、2020年5月15日時点でPubMedで見つかった13,369のCOVID-19関連記事、LitCovidコレクションを分析した。
我々は、最先端のエンティティ認識、分類、クラスタリング、その他のNLP技術を適用する。
クラスタリングアルゴリズムは,関連用語群で表されるトピックを識別し,関連する文書に対応するクラスタを算出する。
論文 参考訳(メタデータ) (2020-08-07T23:39:29Z) - COVID-19 therapy target discovery with context-aware literature mining [5.839799877302573]
本稿では,エンティティ間の関係を近似することで,経験的表現データの文脈化を行うシステムを提案する。
トランスファーラーニングによりより大きな科学的文脈を活用するために,新しい埋め込み生成手法を提案する。
論文 参考訳(メタデータ) (2020-07-30T18:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。