論文の概要: Optimal strategies for reject option classifiers
- arxiv url: http://arxiv.org/abs/2101.12523v1
- Date: Fri, 29 Jan 2021 11:09:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 00:28:16.733258
- Title: Optimal strategies for reject option classifiers
- Title(参考訳): リジェクトオプション分類器の最適戦略
- Authors: V. Franc, D. Prusa, V. Voracek
- Abstract要約: 拒絶オプションの分類では、分類器は予測から逸脱する不確実なケースで許可される。
我々は、最小選択リスクと保証カバレッジを持つ分類器を求める有界被覆モデルという対称的な定義を作成した。
任意のブラックボックス分類器の例から適切な不確かさスコアを学習するための2つのアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In classification with a reject option, the classifier is allowed in
uncertain cases to abstain from prediction. The classical cost-based model of a
reject option classifier requires the cost of rejection to be defined
explicitly. An alternative bounded-improvement model, avoiding the notion of
the reject cost, seeks for a classifier with a guaranteed selective risk and
maximal cover. We coin a symmetric definition, the bounded-coverage model,
which seeks for a classifier with minimal selective risk and guaranteed
coverage. We prove that despite their different formulations the three
rejection models lead to the same prediction strategy: a Bayes classifier
endowed with a randomized Bayes selection function. We define a notion of a
proper uncertainty score as a scalar summary of prediction uncertainty
sufficient to construct the randomized Bayes selection function. We propose two
algorithms to learn the proper uncertainty score from examples for an arbitrary
black-box classifier. We prove that both algorithms provide Fisher consistent
estimates of the proper uncertainty score and we demonstrate their efficiency
on different prediction problems including classification, ordinal regression
and structured output classification.
- Abstract(参考訳): リジェクトオプションによる分類では、不確定なケースでは、分類器は予測を省略することができる。
リジェクトオプション分類器の古典的なコストベースモデルは、リジェクションのコストを明示的に定義する必要がある。
代替の有界改善モデルは、拒絶コストの概念を避け、選択的リスクと最大被覆が保証された分類子を求める。
我々は、最小選択リスクと保証カバレッジを持つ分類器を求める有界被覆モデルという対称的な定義を作成した。
異なる定式化にもかかわらず、3つの拒絶モデルは同じ予測戦略をもたらすことを証明している: ベイズ分類器は、ランダム化されたベイズ選択関数を持つ。
確率化されたベイズ選択関数を構成するのに十分な予測不確かさのスカラー要約として、適切な不確かさスコアの概念を定義する。
任意のブラックボックス分類器の例から適切な不確かさスコアを学習するための2つのアルゴリズムを提案する。
どちらのアルゴリズムもフィッシャーの適切な不確実性スコアの一貫した推定を提供し、分類、順序回帰、構造化出力分類といった様々な予測問題に対してその効率性を示す。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
提案モデルでは,不確かさ予測を正規化し,予測と不確かさ推定の両方を計算する訓練を行う。
複数ビュー予測と不確かさと信頼度を考慮し、最終的な予測を計算する方法をいくつか提案した。
提案手法はクリーンでノイズの多いラベル付きCIFAR-10データセットを用いて検証した。
論文 参考訳(メタデータ) (2024-04-16T06:40:51Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Distribution-Free Inference for the Regression Function of Binary
Classification [0.0]
本稿では,ユーザの信頼度レベルに対する真の回帰関数に対して,正確に,分布自由で,漸近的に保証されていない信頼領域を構築するための再サンプリングフレームワークを提案する。
構築された信頼領域は強い整合性、すなわち、任意の偽モデルが確率 1 で長期にわたって除外されることが証明された。
論文 参考訳(メタデータ) (2023-08-03T15:52:27Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
カスケードは、推論コストをサンプル毎に適応的に変化させる古典的な戦略である。
deferralルールは、シーケンス内の次の分類子を呼び出すか、または予測を終了するかを決定する。
カスケードの構造に執着しているにもかかわらず、信頼に基づく推論は実際は極めてうまく機能することが多い。
論文 参考訳(メタデータ) (2023-07-06T04:13:57Z) - AUC-based Selective Classification [5.406386303264086]
選択関数を与えられたバイナリ分類器に関連付けるためのモデルに依存しない手法を提案する。
このような目的を達成するために、理論的正当化と$AUCross$と呼ばれる新しいアルゴリズムの両方を提供する。
実験によると、$AUCross$はAUCのトレードオフカバレッジに成功し、精度を最適化することを目的とした既存の選択的な分類方法を改善している。
論文 参考訳(メタデータ) (2022-10-19T16:29:50Z) - Learning When to Say "I Don't Know" [0.5505634045241288]
本稿では,決定空間における不確実性領域を識別・除去するリジェクトオプション分類手法を提案する。
そこで我々は,相補的拒絶領域を解析し,クラスごとのソフトマックス閾値を学習するための検証セットを用いることにより,代替的な定式化を検討する。
提案手法の利点を,2次元点,画像,テキスト分類データセットを用いて評価した。
論文 参考訳(メタデータ) (2022-09-11T21:50:03Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Performance-Agnostic Fusion of Probabilistic Classifier Outputs [2.4206828137867107]
本稿では,1つのコンセンサスクラス予測を行うために,分類器の確率的出力を組み合わせる手法を提案する。
提案手法は,精度が性能指標である状況において有効である。
キャリブレーションされた確率を出力しないので、そのような確率がさらなる処理に必要となる状況には適さない。
論文 参考訳(メタデータ) (2020-09-01T16:53:29Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。