Consistent Recurrent Neural Networks for 3D Neuron Segmentation
- URL: http://arxiv.org/abs/2102.01021v1
- Date: Mon, 1 Feb 2021 17:54:46 GMT
- Title: Consistent Recurrent Neural Networks for 3D Neuron Segmentation
- Authors: Felix Gonda, Donglai Wei, Hanspeter Pfister
- Abstract summary: We present a recurrent network for the 3D reconstruction of neurons that sequentially generates binary masks for every object in an image with consistency.
We evaluate our method on three benchmarks for neuron segmentation and achieved state-of-the-art performance on the SN3D challenge.
- Score: 28.105293815657845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a recurrent network for the 3D reconstruction of neurons that
sequentially generates binary masks for every object in an image with
spatio-temporal consistency. Our network models consistency in two parts: (i)
local, which allows exploring non-occluding and temporally-adjacent object
relationships with bi-directional recurrence. (ii) non-local, which allows
exploring long-range object relationships in the temporal domain with skip
connections. Our proposed network is end-to-end trainable from an input image
to a sequence of object masks, and, compared to methods relying on object
boundaries, its output does not require post-processing. We evaluate our method
on three benchmarks for neuron segmentation and achieved state-of-the-art
performance on the SNEMI3D challenge.
Related papers
- Dance of SNN and ANN: Solving binding problem by combining spike timing
and reconstructive attention [13.518085470219779]
The binding problem is one of the fundamental challenges that prevent the artificial neural network (ANNs) from a compositional understanding of the world.
We propose a brain-inspired hybrid neural network (HNN) that introduces temporal binding theory originated from neuroscience into ANNs.
arXiv Detail & Related papers (2022-11-11T06:47:54Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - DyCSC: Modeling the Evolutionary Process of Dynamic Networks Based on
Cluster Structure [1.005130974691351]
We propose a novel temporal network embedding method named Dynamic Cluster Structure Constraint model (DyCSC)
DyCSC captures the evolution of temporal networks by imposing a temporal constraint on the tendency of the nodes in the network to a given number of clusters.
It consistently outperforms competing methods by significant margins in multiple temporal link prediction tasks.
arXiv Detail & Related papers (2022-10-23T10:23:08Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - 3D Dense Face Alignment with Fused Features by Aggregating CNNs and GCNs [28.7443367565456]
This is achieved by seamlessly combining standard convolutional neural networks (CNNs) with Graph Convolution Networks (GCNs)
By iteratively fusing the features across different layers and stages of the CNNs and GCNs, our approach can provide a dense face alignment and 3D face reconstruction simultaneously.
Experiments on several challenging datasets demonstrate that our method outperforms state-of-the-art approaches on both 2D and 3D face alignment tasks.
arXiv Detail & Related papers (2022-03-09T11:07:10Z) - Lifelong 3D Object Recognition and Grasp Synthesis Using Dual Memory
Recurrent Self-Organization Networks [0.0]
Humans learn to recognize and manipulate new objects in lifelong settings without forgetting the previously gained knowledge.
In most conventional deep neural networks, this is not possible due to the problem of catastrophic forgetting.
We propose a hybrid model architecture consisting of a dual-memory recurrent neural network and an autoencoder to tackle object recognition and grasping simultaneously.
arXiv Detail & Related papers (2021-09-23T11:14:13Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.