Experimental characterisation of a non-Markovian quantum process
- URL: http://arxiv.org/abs/2102.01327v1
- Date: Tue, 2 Feb 2021 06:00:04 GMT
- Title: Experimental characterisation of a non-Markovian quantum process
- Authors: K. Goswami, C. Giarmatzi, C. Monterola, S. Shrapnel, J. Romero, and F.
Costa
- Abstract summary: We employ machine learning models to estimate the amount of non-Markovianity.
We are able to predict the non-Markovianity measure with $90%$ accuracy.
Our experiment paves the way for efficient detection of non-Markovian noise appearing in large scale quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Every quantum system is coupled to an environment. Such system-environment
interaction leads to temporal correlation between quantum operations at
different times, resulting in non-Markovian noise. In principle, a full
characterisation of non-Markovian noise requires tomography of a multi-time
processes matrix, which is both computationally and experimentally demanding.
In this paper, we propose a more efficient solution. We employ machine learning
models to estimate the amount of non-Markovianity, as quantified by an
information-theoretic measure, with tomographically incomplete measurement. We
test our model on a quantum optical experiment, and we are able to predict the
non-Markovianity measure with $90\%$ accuracy. Our experiment paves the way for
efficient detection of non-Markovian noise appearing in large scale quantum
computers.
Related papers
- Quantum non-Markovian noise in randomized benchmarking of spin-boson models [0.0]
We study the effects of a quantum non-Markovian bath on qubit randomized benchmarking experiments.
Allowing for non-Markovianity in the interactions leads to clear differences in the randomized benchmarking decay curves.
These results inform efforts on incorporating quantum non-Markovian noise in the characterization and benchmarking of quantum devices.
arXiv Detail & Related papers (2025-02-20T16:25:59Z) - Full Band Structure Calculation of Semiconducting Materials on a Noisy Quantum Processor [2.6327434138210095]
We propose the Reduced Quantum Equation-of-Motion method to find the entire energy spectrum of a quantum system.
We analyse the performance of our method on two noise models and calculate the excitation energies of a bulk Silicon and Gallium Arsenide using our method on an IBM quantum processor.
arXiv Detail & Related papers (2024-05-15T06:35:39Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Compressed gate characterization for quantum devices with
time-correlated noise [0.0]
We present a general framework for quantum process tomography (QPT) in the presence of time-correlated noise.
As an application of our method, we perform a comparative theoretical and experimental analysis of silicon spin qubits.
We find good agreement between our theoretically predicted process fidelities and two qubit interleaved randomized benchmarking fidelities of 99.8% measured in recent experiments on silicon spin qubits.
arXiv Detail & Related papers (2023-07-26T18:05:49Z) - Inferring interpretable dynamical generators of local quantum
observables from projective measurements through machine learning [17.27816885271914]
We utilize a machine-learning approach to infer the dynamical generator governing the evolution of local observables in a many-body system from noisy data.
Our method is not only useful for extracting effective dynamical generators from many-body systems, but may also be applied for inferring decoherence mechanisms of quantum simulation and computing platforms.
arXiv Detail & Related papers (2023-06-06T18:01:18Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
We introduce a QEM method termed Adaptive KIK' that adapts to the noise level of the target device.
The implementation of the method is experimentally simple -- it does not involve any tomographic information or machine-learning stage.
We demonstrate our findings in the IBM quantum computers and through numerical simulations.
arXiv Detail & Related papers (2023-03-09T02:50:53Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Estimating the degree of non-Markovianity using variational quantum
circuits [0.0]
We propose to use a qubit as a probe to estimate the degree of non-Markovianity of the environment.
We find an optimal sequence of qubit-environment interactions that yield accurate estimations.
arXiv Detail & Related papers (2022-02-28T17:14:46Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.