論文の概要: The Importance of Models in Data Analysis with Small Human Movement
Datasets -- Inspirations from Neurorobotics Applied to Posture Control of
Humanoids and Humans
- arxiv url: http://arxiv.org/abs/2102.02543v1
- Date: Thu, 4 Feb 2021 11:02:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-05 18:33:48.089202
- Title: The Importance of Models in Data Analysis with Small Human Movement
Datasets -- Inspirations from Neurorobotics Applied to Posture Control of
Humanoids and Humans
- Title(参考訳): 小型人体運動データセットを用いたデータ解析におけるモデルの重要性-ヒトとヒトの姿勢制御に応用した神経ロボティクスからの吸入
- Authors: Vittorio Lippi, Christoph Maurer and Thomas Mergner
- Abstract要約: 本研究では,DECパラメトリックモデルを用いた姿勢制御のための畳み込みニューラルネットワーク(CNN)に基づくシステム同定手法を提案する。
提案した制御モデルのモジュラ構造は、異なる自由度を制御するモジュールのパラメータを特定するために同じニューラルネットワークを使用するという意味で、モジュール識別手順の設計にインスピレーションを与えた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This work presents a system identification procedure based on Convolutional
Neural Networks (CNN) for human posture control using the DEC (Disturbance
Estimation and Compensation) parametric model. The modular structure of the
proposed control model inspired the design of a modular identification
procedure, in the sense that the same neural network is used to identify the
parameters of the modules controlling different degrees of freedom. In this way
the presented examples of body sway induced by external stimuli provide several
training samples at once.
- Abstract(参考訳): 本研究では、DEC(Disturbance Estimation and Compensation)パラメトリックモデルを用いた人間の姿勢制御のためのConvolutional Neural Networks(CNN)に基づくシステム識別手順を提案する。
提案した制御モデルのモジュラ構造は、異なる自由度を制御するモジュールのパラメータを特定するために同じニューラルネットワークを使用するという意味で、モジュール識別手順の設計にインスピレーションを与えた。
このように、外部刺激によって引き起こされる身体動揺の例では、複数のトレーニングサンプルを一度に提供しています。
関連論文リスト
- A Transition System Abstraction Framework for Neural Network Dynamical
System Models [2.414910571475855]
本稿では,ニューラルネットワーク力学系モデルのためのトランジションシステム抽象化フレームワークを提案する。
このフレームワークは、データ駆動型ニューラルネットワークモデルをトランジションシステムに抽象化し、ニューラルネットワークモデルを解釈可能にする。
論文 参考訳(メタデータ) (2024-02-18T23:49:18Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
本稿では, 生体組織モデリングにおけるデータ駆動型相関について述べる。これは, 未知の負荷シナリオ下でのデジタル画像相関(DIC)測定に基づいて変位場を予測することを目的としている。
ブタ三尖弁リーフレット上の多軸延伸プロトコルのDIC変位追跡測定から材料データベースを構築した。
材料応答は、負荷から結果の変位場への解演算子としてモデル化され、材料特性はデータから暗黙的に学習され、自然にネットワークパラメータに埋め込まれる。
論文 参考訳(メタデータ) (2022-04-01T04:56:41Z) - Neuro-physical dynamic load modeling using differentiable parametric
optimization [1.4279471205248533]
提案した縮小等価性は、ニューラルネットワークで強化された従来のZIP負荷モデルからなる神経物理モデルである。
この神経物理学的ZIP負荷モデルの性能と精度を,中規模350バス伝送分配ネットワークで示す。
論文 参考訳(メタデータ) (2022-03-20T15:34:48Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Deep Learning Based Model Identification System Exploits the Modular
Structure of a Bio-Inspired Posture Control Model for Humans and Humanoids [0.0]
本研究では,DECパラメトリックモデルを用いた姿勢制御のための畳み込みニューラルネットワーク(CNN)に基づくシステム同定手法を提案する。
提案した制御モデルのモジュラ構造は、異なる自由度を制御するモジュールのパラメータを特定するために同じニューラルネットワークを使用するという意味で、モジュール識別手順の設計にインスピレーションを与えた。
論文 参考訳(メタデータ) (2021-02-04T10:54:24Z) - Deep Learning for Posture Control Nonlinear Model System and Noise
Identification [0.0]
本稿では,人間の姿勢制御モデルのための畳み込みニューラルネットワーク(CNN)に基づくシステム識別手法を提案する。
ヒューマノイド法の可能性についても論じる。
論文 参考訳(メタデータ) (2020-06-04T19:34:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。