論文の概要: Neuro-physical dynamic load modeling using differentiable parametric
optimization
- arxiv url: http://arxiv.org/abs/2203.10582v1
- Date: Sun, 20 Mar 2022 15:34:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-23 09:17:32.833344
- Title: Neuro-physical dynamic load modeling using differentiable parametric
optimization
- Title(参考訳): 微分パラメトリック最適化を用いた神経物理動的負荷モデリング
- Authors: Shrirang Abhyankar, Jan Drgona, Andrew August, Elliot Skomski, Aaron
Tuor
- Abstract要約: 提案した縮小等価性は、ニューラルネットワークで強化された従来のZIP負荷モデルからなる神経物理モデルである。
この神経物理学的ZIP負荷モデルの性能と精度を,中規模350バス伝送分配ネットワークで示す。
- 参考スコア(独自算出の注目度): 1.4279471205248533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate a data-driven approach for obtaining a reduced
equivalent load model of distribution systems for electromechanical transient
stability analysis. The proposed reduced equivalent is a neuro-physical model
comprising of a traditional ZIP load model augmented with a neural network.
This neuro-physical model is trained through differentiable programming. We
discuss the formulation, modeling details, and training of the proposed model
set up as a differential parametric program. The performance and accuracy of
this neurophysical ZIP load model is presented on a medium-scale 350-bus
transmission-distribution network.
- Abstract(参考訳): 本研究では,電気機械過渡安定解析のための分散系の等価負荷モデルを求めるためのデータ駆動手法について検討する。
提案した縮小等価性は、ニューラルネットワークで強化された従来のZIP負荷モデルからなる神経物理モデルである。
この神経物理モデルは、微分可能プログラミングによって訓練される。
本稿では,微分パラメトリックプログラムとして設定したモデルの定式化,モデリングの詳細,訓練について述べる。
この神経物理学的ZIP負荷モデルの性能と精度を,中規模350バス伝送分配ネットワークで示す。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems [1.2972104025246092]
本稿では,ハイブリッド量子古典系の非線形非断熱力学をモデル化するための畳み込みニューラルネットワークに基づくRNNモデルを提案する。
検証研究により、訓練されたPARCモデルは、一次元半古典的なホルシュタインモデルの時空進化を再現できることが示されている。
論文 参考訳(メタデータ) (2024-12-09T16:23:25Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
不均一物質のマイクロスケール解析のためのハイブリッド物理に基づくデータ駆動サロゲートモデルについて検討した。
提案したモデルは、ニューラルネットワークにそれらを埋め込むことで、フルオーダーのマイクロモデルで使用されるモデルに含まれる物理に基づく知識の恩恵を受ける。
論文 参考訳(メタデータ) (2024-04-05T12:40:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
本稿では, 生体組織モデリングにおけるデータ駆動型相関について述べる。これは, 未知の負荷シナリオ下でのデジタル画像相関(DIC)測定に基づいて変位場を予測することを目的としている。
ブタ三尖弁リーフレット上の多軸延伸プロトコルのDIC変位追跡測定から材料データベースを構築した。
材料応答は、負荷から結果の変位場への解演算子としてモデル化され、材料特性はデータから暗黙的に学習され、自然にネットワークパラメータに埋め込まれる。
論文 参考訳(メタデータ) (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Cubature Kalman Filter Based Training of Hybrid Differential Equation
Recurrent Neural Network Physiological Dynamic Models [13.637931956861758]
ニューラルネットワーク近似を用いて、未知の常微分方程式を既知のODEで近似する方法を示す。
その結果、このRBSEによるNNパラメータのトレーニングは、バックプロパゲーションによるニューラルネットワークのトレーニングよりも優れた結果(測定/状態推定精度)が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-12T15:38:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。