論文の概要: Covid-19 risk factors: Statistical learning from German healthcare
claims data
- arxiv url: http://arxiv.org/abs/2102.02697v1
- Date: Thu, 4 Feb 2021 15:48:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-05 17:08:36.009501
- Title: Covid-19 risk factors: Statistical learning from German healthcare
claims data
- Title(参考訳): Covid-19のリスクファクター:ドイツの医療クレームデータからの統計的学習
- Authors: Roland Jucknewitz, Oliver Weidinger, Anja Schramm
- Abstract要約: 我々は、AOK Bayernの請求データを用いた振り返りコホート研究に基づいて、Covid-19の重度、重度、致命的なコースに対する事前のリスク要因を分析した。
方法として,候補因子の事前グループ化と事前選択を回避し,医療分類システムからの詳細な階層情報を利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyse prior risk factors for severe, critical or fatal courses of
Covid-19 based on a retrospective cohort study using claims data of the AOK
Bayern. As a methodological contribution, we avoid prior grouping and
pre-selection of candidate risk factors and use fine-grained hierarchical
information from medical classification systems for diagnoses, pharmaceuticals
and procedures, using more than 33,000 covariates. Our approach is competitive
to formal analyses using well-specified morbidity groups without needing prior
subject-matter knowledge. The methodology and our published coefficients may be
of interest for decision makers when prioritizing protective measures towards
vulnerable subpopulations as well as for researchers aiming to adjust for
confounders in studies of individual risk factors also for smaller cohorts.
- Abstract(参考訳): 我々は、AOK Bayernの請求データを用いた振り返りコホート研究に基づいて、Covid-19の重度、重度、致命的なコースに対する事前のリスク要因を分析した。
方法として, 候補因子の事前グループ化と事前選択を回避し, 33,000種以上の共変量を用いて, 診断, 医薬, 手順の詳細な階層化情報を使用する。
我々のアプローチは、事前の主観的知識を必要とせず、明確に特定された致死性グループを用いた形式解析と競合する。
この方法と公表された係数は、脆弱な亜集団に対する保護措置を優先する意思決定者や、より小さなコホートに対する個人のリスク要因の研究における共同創設者の調整を目指す研究者にとって、興味深いものかもしれない。
関連論文リスト
- Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [55.350512057217244]
肺がんは世界中でがん死亡の原因となっている。
NLST(National Lung Screening Trial)は、肺がんの危険因子の調査を目的とした全国的な研究である。
本研究はCTスキャンのテクスチャパターンを客観的に測定するCTTAを用いた。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
マルチアーム・バンディット・フレームワークを用いてワクチンのアロケーション戦略を評価する新しい手法を提案する。
$m$-top Exploringにより、アルゴリズムは最高のユーティリティを期待する$m$ポリシーを学ぶことができる。
ベルギーのCOVID-19流行を個人モデルSTRIDEを用いて検討し、予防接種方針のセットを学習する。
論文 参考訳(メタデータ) (2023-01-30T12:22:30Z) - A Survey of Risk-Aware Multi-Armed Bandits [84.67376599822569]
我々は、様々な利害リスク対策をレビューし、その特性についてコメントする。
我々は,探索と探索のトレードオフが現れる,後悔の最小化設定のためのアルゴリズムを検討する。
今後の研究の課題と肥大化についてコメントし、締めくくりに締めくくります。
論文 参考訳(メタデータ) (2022-05-12T02:20:34Z) - Machine learning approach to dynamic risk modeling of mortality in
COVID-19: a UK Biobank study [0.0]
新型コロナウイルス(COVID-19)のパンデミックは、高リスク患者の階層化を支援する堅牢でスケーラブルなモニタリングツールを緊急に必要としてきた。
本研究は、英国バイオバンクを用いた予測モデルを開発し、検証し、新型コロナウイルスの死亡リスクを推定することを目的とする。
論文 参考訳(メタデータ) (2021-04-19T11:51:20Z) - Risk factor identification for incident heart failure using neural
network distillation and variable selection [24.366241122862473]
リスク関連同定のための確立されたディープラーニングモデルによって学習された隠れたパターンを解く2つの方法を提案する。
788,880例(8.3%の心不全)のコホートが検討された。
モデル蒸留では, 心不全に関連する598例と379例を, 人口レベルでそれぞれ同定した。
これらの重要な集団レベルの知見に加えて, 臨床における心不全の出現を考慮し, 個人レベルでの解釈へのアプローチを開発した。
論文 参考訳(メタデータ) (2021-02-17T10:20:38Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [89.01584399789951]
歴史的専門家の意思決定を豊富な情報源として利用することを検討します。
観察されたラベルだけで学習する制限を緩和するために活用できることを示しています。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - On the Importance of Diversity in Re-Sampling for Imbalanced Data and
Rare Events in Mortality Risk Models [0.0]
外科的アウトカムリスクツール(SORT)は、英国の主要な選択的内科手術の期間を通して死亡リスクを予測するために開発されたツールの1つです。
本研究では,データセット内のクラス不均衡に対処することにより,SORT予測モデルの拡張を行う。
提案手法は,共通再サンプリング技術上での多様性に基づく選択の応用について検討する。
論文 参考訳(メタデータ) (2020-12-15T09:45:35Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
新型コロナウイルス患者の効果的なスクリーニングを可能にするロジスティック回帰とXGBoost分類器が作成された。
得られた分類モデルは、DECODEサービス(decode.polsl.pl)の基礎を提供し、COVID-19病患者のスクリーニング支援に役立てることができる。
このデータセットは、3,000以上のサンプルで構成されており、ポーランドの病院で収集されたアンケートに基づいている。
論文 参考訳(メタデータ) (2020-11-24T17:44:01Z) - A framework for optimizing COVID-19 testing policy using a Multi Armed
Bandit approach [15.44492804626514]
新型コロナウイルスの患者発見に対する様々な優先順位付け方針の影響について論じる。
本研究は, 人口監視の必要性と, 正の個体の最大発見のバランスをとるための枠組みを提案する。
論文 参考訳(メタデータ) (2020-07-28T10:28:38Z) - Kernel Assisted Learning for Personalized Dose Finding [20.52632915107782]
個別化線量規則は、患者レベル情報に基づいて、連続した安全な線量範囲内の線量レベルを推奨する。
本稿では,最適な個別化線量規則を推定するためのカーネル支援学習法を提案する。
論文 参考訳(メタデータ) (2020-07-19T23:03:26Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。