論文の概要: A simpler spectral approach for clustering in directed networks
- arxiv url: http://arxiv.org/abs/2102.03188v1
- Date: Fri, 5 Feb 2021 14:16:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-08 12:53:33.729664
- Title: A simpler spectral approach for clustering in directed networks
- Title(参考訳): 有向ネットワークにおけるクラスタリングのための単純なスペクトルアプローチ
- Authors: Simon Coste and Ludovic Stephan
- Abstract要約: 隣接行列の固有値/固有ベクトル分解は、すべての一般的な方法よりも単純であることを示す。
広く使われているk平均アルゴリズムよりもガウス混合クラスタリングの方が優れていることを示す数値的な証拠を提供する。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the task of clustering in directed networks. We show that using the
eigenvalue/eigenvector decomposition of the adjacency matrix is simpler than
all common methods which are based on a combination of data regularization and
SVD truncation, and works well down to the very sparse regime where the edge
density has constant order. Our analysis is based on a Master Theorem
describing sharp asymptotics for isolated eigenvalues/eigenvectors of sparse,
non-symmetric matrices with independent entries. We also describe the limiting
distribution of the entries of these eigenvectors; in the task of digraph
clustering with spectral embeddings, we provide numerical evidence for the
superiority of Gaussian Mixture clustering over the widely used k-means
algorithm.
- Abstract(参考訳): 有向ネットワークにおけるクラスタリングの課題について検討する。
隣接行列の固有値/固有ベクトル分解は、データ正規化とSVD切り換えの組み合わせに基づくすべての一般的な方法よりも単純であり、エッジ密度が一定の順序を持つ非常に狭い状態までうまく機能することを示した。
我々の分析は、独立成分を持つスパース非対称行列の孤立固有値/固有ベクトルに対する鋭い漸近を記述するマスター定理に基づいている。
また、これらの固有ベクトルのエントリの制限分布を記述し、スペクトル埋め込みによるダイグラフクラスタリングのタスクでは、広く使用されているk-平均アルゴリズム上のガウス混合クラスタリングの優位性の数値的証拠を提供します。
関連論文リスト
- Bias-Corrected Joint Spectral Embedding for Multilayer Networks with Invariant Subspace: Entrywise Eigenvector Perturbation and Inference [0.0]
本稿では、新しいバイアス補正型共同スペクトル埋め込みアルゴリズムを用いて、異種多重ネットワーク間の不変部分空間を推定する。
提案アルゴリズムは、閉形式バイアス式を利用して、正方形ネットワーク隣接行列の和の対角偏差を校正する。
提案アルゴリズムのエントリワイドな部分空間摂動境界を含むエントリワイドな部分空間推定理論の完全なレシピを確立する。
論文 参考訳(メタデータ) (2024-06-12T03:36:55Z) - Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - Asymptotic Gaussian Fluctuations of Eigenvectors in Spectral Clustering [24.558241146742205]
一般スパイクランダム行列モデルの信号$$$のノイズ構造は、対応するGramカーネル行列の固有ベクトルに転送される。
このCLTライクな結果は、スペクトルクラスタリングの分類性能を正確に予測する最後の欠落点であった。
論文 参考訳(メタデータ) (2024-02-19T17:25:12Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Quantitative deterministic equivalent of sample covariance matrices with
a general dependence structure [0.0]
我々は、次元とスペクトルパラメータの両方を含む量的境界を証明し、特に実正の半直線に近づくことを可能にする。
応用として、これらの一般モデルの経験スペクトル分布のコルモゴロフ距離の収束の新しい境界を得る。
論文 参考訳(メタデータ) (2022-11-23T15:50:31Z) - flow-based clustering and spectral clustering: a comparison [0.688204255655161]
本研究では,本質的なネットワーク構造を持つデータに対する新しいグラフクラスタリング手法を提案する。
我々は、ユークリッド特徴ベクトルを構築するために、データ固有のネットワーク構造を利用する。
以上の結果から,クラスタリング手法が特定のグラフ構造に対処できることが示唆された。
論文 参考訳(メタデータ) (2022-06-20T21:49:52Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Eigendecomposition-Free Training of Deep Networks for Linear
Least-Square Problems [107.3868459697569]
我々は、ディープネットワークのトレーニングに固有分解のないアプローチを導入する。
この手法は固有分解の明示的な微分よりもはるかに堅牢であることを示す。
我々の手法は収束特性が良く、最先端の結果が得られます。
論文 参考訳(メタデータ) (2020-04-15T04:29:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。