論文の概要: Extremal learning: extremizing the output of a neural network in
regression problems
- arxiv url: http://arxiv.org/abs/2102.03626v1
- Date: Sat, 6 Feb 2021 18:01:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 22:09:22.819171
- Title: Extremal learning: extremizing the output of a neural network in
regression problems
- Title(参考訳): 極端学習:回帰問題におけるニューラルネットワークの出力の最大化
- Authors: Zakaria Patel and Markus Rummel
- Abstract要約: 我々は、回帰問題において、トレーニングされたニューラルネットワークのエクストリームを効率的に見つける方法を示す。
近似モデルの極限入力を見つけることは、追加のニューラルネットワークのトレーニングとして定式化される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks allow us to model complex relationships between variables. We
show how to efficiently find extrema of a trained neural network in regression
problems. Finding the extremizing input of an approximated model is formulated
as the training of an additional neural network with a loss function that
minimizes when the extremizing input is achieved. We further show how to
incorporate additional constraints on the input vector such as limiting the
extrapolation of the extremizing input vector from the original training data
set. An instructional example of this approach using TensorFlow is included.
- Abstract(参考訳): ニューラルネットワークは変数間の複雑な関係をモデル化する。
回帰問題において、訓練されたニューラルネットワークの極端を効率的に見つける方法を示す。
近似モデルの過大入力を求めることは、過大な入力が達成された場合に最小となる損失関数を持つ追加のニューラルネットワークのトレーニングとして定式化される。
さらに, 入力ベクトルに制約を加える方法として, 入力ベクトルを元のトレーニングデータセットから外挿することを制限することを挙げる。
TensorFlowを使ったこのアプローチの指導例が挙げられます。
関連論文リスト
- Using Linear Regression for Iteratively Training Neural Networks [4.873362301533824]
ニューラルネットワークの重みとバイアスを学習するための単純な線形回帰に基づくアプローチを提案する。
このアプローチは、より大きく、より複雑なアーキテクチャに向けられている。
論文 参考訳(メタデータ) (2023-07-11T11:53:25Z) - Embedding stochastic differential equations into neural networks via
dual processes [0.0]
本稿では、微分方程式の予測のためのニューラルネットワーク構築のための新しいアプローチを提案する。
提案手法は入力と出力のデータセットを必要としない。
実演として,Ornstein-Uhlenbeck プロセスと van der Pol システムのためのニューラルネットワークを構築した。
論文 参考訳(メタデータ) (2023-06-08T00:50:16Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
ラベルフリップ雑音を持つ2層ReLU畳み込みニューラルネットワークを学習するためのアルゴリズム依存型リスクバウンダリを確立する。
緩やかな条件下では、勾配降下によってトレーニングされたニューラルネットワークは、ほぼゼロに近いトレーニング損失とベイズ最適試験リスクを達成できることを示す。
論文 参考訳(メタデータ) (2023-03-07T18:59:38Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Performance Bounds for Neural Network Estimators: Applications in Fault
Detection [2.388501293246858]
ニューラルネットワークの堅牢性を定量化し,モデルに基づく異常検知器の構築とチューニングを行った。
チューニングでは,通常動作で想定される誤報発生率の上限を具体的に提示する。
論文 参考訳(メタデータ) (2021-03-22T19:23:08Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
本稿では,測定誤差モデルの推定に有効なニューラルネットワーク設計を提案する。
完全に接続されたフィードフォワードニューラルネットワークを用いて回帰関数を$f(x)$に近似する。
我々は、ニューラルネットワークアプローチと古典的ノンパラメトリック手法を比較するために、広範囲にわたる数値的研究を行っている。
論文 参考訳(メタデータ) (2020-07-15T06:05:37Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
この研究で、中間的神経表現がニューラルネットワークにさらなる柔軟性をもたらすことを実証する。
提案手法は, 生の入力と比較して, サンプルの複雑度を向上できることを示す。
この結果から, 深度が深層学習においてなぜ重要かという新たな視点が得られた。
論文 参考訳(メタデータ) (2020-06-24T02:44:54Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
この研究では、ニューラルネットワークの特定のクラス、すなわち残留ニューラルネットワークに焦点を当てる。
我々は、ネットワークのパラメータ、すなわち重みとバイアスに関する定常状態と感度を分析する。
残留ニューラルネットワークにインスパイアされた微視的ダイナミクスの修正は、ネットワークのフォッカー・プランクの定式化につながる。
論文 参考訳(メタデータ) (2020-01-07T13:41:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。