論文の概要: Dynamic Neural Networks: A Survey
- arxiv url: http://arxiv.org/abs/2102.04906v1
- Date: Tue, 9 Feb 2021 16:02:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 15:01:14.259861
- Title: Dynamic Neural Networks: A Survey
- Title(参考訳): 動的ニューラルネットワーク:調査
- Authors: Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, Yulin Wang
- Abstract要約: 動的ニューラルネットワークは、ディープラーニングにおける新たな研究トピックである。
動的ネットワークは、それらの構造やパラメータを異なる入力に適応させることができ、精度、計算効率、適応性などの点で顕著な利点をもたらす。
- 参考スコア(独自算出の注目度): 34.30356864359789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic neural network is an emerging research topic in deep learning.
Compared to static models which have fixed computational graphs and parameters
at the inference stage, dynamic networks can adapt their structures or
parameters to different inputs, leading to notable advantages in terms of
accuracy, computational efficiency, adaptiveness, etc. In this survey, we
comprehensively review this rapidly developing area by dividing dynamic
networks into three main categories: 1) instance-wise dynamic models that
process each instance with data-dependent architectures or parameters; 2)
spatial-wise dynamic networks that conduct adaptive computation with respect to
different spatial locations of image data and 3) temporal-wise dynamic models
that perform adaptive inference along the temporal dimension for sequential
data such as videos and texts. The important research problems of dynamic
networks, e.g., architecture design, decision making scheme, optimization
technique and applications, are reviewed systematically. Finally, we discuss
the open problems in this field together with interesting future research
directions.
- Abstract(参考訳): 動的ニューラルネットワークはディープラーニングにおける新たな研究テーマである。
推論段階で一定の計算グラフとパラメータを持つ静的モデルと比較して、動的ネットワークは構造やパラメータを異なる入力に適応することができ、精度、計算効率、適応性などの点で顕著な利点をもたらします。
In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts.
動的ネットワークの重要な研究課題,例えばアーキテクチャ設計,意思決定手法,最適化技術,応用について体系的に検討する。
最後に,この分野のオープンな問題と,今後の興味深い研究の方向性について考察する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Learning Continuous Network Emerging Dynamics from Scarce Observations
via Data-Adaptive Stochastic Processes [11.494631894700253]
我々は、データ適応型ネットワークダイナミクスによって制御される新しいプロセスのクラスであるODE Processs for Network Dynamics (NDP4ND)を紹介する。
提案手法はデータと計算効率に優れており,未確認のネットワークに適応できることを示す。
論文 参考訳(メタデータ) (2023-10-25T08:44:05Z) - The Underlying Correlated Dynamics in Neural Training [6.385006149689549]
ニューラルネットワークのトレーニングは、計算集約的なタスクである。
本稿では,パラメータのダイナミクスの相関に基づくモデルを提案する。
この表現は、基礎となるトレーニングダイナミクスの理解を深め、より良い加速技術を設計するための道を開くことができる。
論文 参考訳(メタデータ) (2022-12-18T08:34:11Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Dynamic Network Embedding Survey [11.742863376032112]
本稿では,動的ネットワークの埋め込みに関する調査を行う。
動的ネットワークのための2つの基本データモデル、すなわち離散モデルと連続モデルを提案する。
典型的な学習モデルによって分類階層を洗練させる分類法を構築する。
論文 参考訳(メタデータ) (2021-03-29T09:27:53Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z) - Foundations and modelling of dynamic networks using Dynamic Graph Neural
Networks: A survey [11.18312489268624]
我々は、一貫した詳細な用語と表記を伴う動的ネットワークの基礎を確立する。
提案する用語を用いて,動的グラフニューラルネットワークモデルに関する包括的調査を行う。
論文 参考訳(メタデータ) (2020-05-13T23:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。