論文の概要: A Critical Look At The Identifiability of Causal Effects with Deep
Latent Variable Models
- arxiv url: http://arxiv.org/abs/2102.06648v1
- Date: Fri, 12 Feb 2021 17:43:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-15 16:39:43.028562
- Title: A Critical Look At The Identifiability of Causal Effects with Deep
Latent Variable Models
- Title(参考訳): 深部潜伏変動モデルによる因果効果の同定可能性に関する批判的考察
- Authors: Severi Rissanen, Pekka Marttinen
- Abstract要約: ケーススタディとして因果効果変動オートエンコーダ(CEVAE)を用いる。
CEVAEはいくつかの単純なシナリオで確実に機能するように見えるが、不特定な潜在変数や複雑なデータ分布による正しい因果効果は特定できない。
その結果,識別可能性の問題は無視できないことが明らかとなり,今後の作業でさらに注意を払わなければならないと論じた。
- 参考スコア(独自算出の注目度): 2.326384409283334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using deep latent variable models in causal inference has attracted
considerable interest recently, but an essential open question is their
identifiability. While they have yielded promising results and theory exists on
the identifiability of some simple model formulations, we also know that causal
effects cannot be identified in general with latent variables. We investigate
this gap between theory and empirical results with theoretical considerations
and extensive experiments under multiple synthetic and real-world data sets,
using the causal effect variational autoencoder (CEVAE) as a case study. While
CEVAE seems to work reliably under some simple scenarios, it does not identify
the correct causal effect with a misspecified latent variable or a complex data
distribution, as opposed to the original goals of the model. Our results show
that the question of identifiability cannot be disregarded, and we argue that
more attention should be paid to it in future work.
- Abstract(参考訳): 因果推論における深い潜在変数モデルの使用は、最近かなりの関心を集めているが、重要なオープンな質問は、それらの識別可能性である。
それらは有望な結果をもたらし、いくつかの単純なモデル定式化の識別可能性に理論が存在するが、因果効果が一般に潜伏変数と同一視できないことも分かっている。
本研究では, 因果効果変動オートエンコーダ(CEVAE)をケーススタディとして, 複数の合成および実世界のデータセットに基づく理論的考察と広範な実験により, 理論と実験結果のギャップについて検討する。
CEVAEはいくつかの単純なシナリオで確実に機能するように見えるが、モデルの本来の目的とは対照的に、不特定な潜在変数や複雑なデータ分布による正しい因果効果は特定できない。
その結果,識別可能性の問題は無視できないことが明らかとなり,今後の作業でさらに注意を払わなければならないと論じた。
関連論文リスト
- Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
因果解離は因果モデルを通して相互に関係する潜伏変数を用いてデータの表現を明らかにすることを目的としている。
本稿では,各介入が潜伏変数のメカニズムを変えることにより,未ペアの観測データと介入データが利用可能となるシナリオに焦点を当てる。
因果変数が完全に観測されると、忠実性の仮定の下で因果モデルを特定するために統計的に一貫したアルゴリズムが開発された。
論文 参考訳(メタデータ) (2023-07-12T15:39:39Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
我々は因果発見の課題と観察データに焦点をあてる。
因果構造の特異な識別に必要かつ十分な条件のセットを導出する。
論文 参考訳(メタデータ) (2021-10-30T21:32:42Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。