Bridging Graph Neural Networks and Statistical Relational Learning:
Relational One-Class GCN
- URL: http://arxiv.org/abs/2102.07007v1
- Date: Sat, 13 Feb 2021 21:34:44 GMT
- Title: Bridging Graph Neural Networks and Statistical Relational Learning:
Relational One-Class GCN
- Authors: Devendra Singh Dhami (1), Siwen Yan (2), Sriraam Natarajan (2) ((1) TU
Darmstadt, (2) The University of Texas at Dallas)
- Abstract summary: We consider the problem of learning Graph Convolutional Networks (GCNs) for relational data.
Our method constructs a secondary graph using relational density estimation techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of learning Graph Convolutional Networks (GCNs) for
relational data. Specifically, we consider the classic link prediction and node
classification problems as relational modeling tasks and develop a relational
extension to GCNs. Our method constructs a secondary graph using relational
density estimation techniques where vertices correspond to the target triples.
We emphasize the importance of learning features using the secondary graph and
the advantages of employing a distance matrix over the typically used adjacency
matrix. Our comprehensive empirical evaluation demonstrates the superiority of
our approach over $\mathbf{12}$ different GCN models, relational embedding
techniques, rule learning techniques and relational models.
Related papers
- Hierarchical Attention Models for Multi-Relational Graphs [40.143721982295915]
We present Bi-Level Attention-Based Graph Convolutional Networks (BR-GCN)
BR-GCN models use bi-level attention to learn node embeddings through (1) node-level attention, and (2) relation-level attention.
We show that BR-GCN's attention mechanism is both scalable and more effective in learning compared to state-of-the-art GNNs.
arXiv Detail & Related papers (2024-04-14T21:37:39Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition [4.041834517339835]
We propose a novel knowledge graph that incorporates tensor decomposition within the aggregation function of Graph Conalvolution Network (R-GCN)
Our model enhances the representation of neighboring entities by employing projection matrices of a low-rank tensor defined by relation types.
We adopt a training strategy inspired by contrastive learning to relieve the training limitation of the 1-k-k encoder method inherent in handling vast graphs.
arXiv Detail & Related papers (2022-12-11T19:07:34Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
We introduce a novel framework for graph convolutional networks that learns the topological properties of graphs.
The design principle of our method is based on the optimization of a constrained objective function.
Experiments conducted on the challenging task of skeleton-based action recognition shows the superiority of the proposed method.
arXiv Detail & Related papers (2021-12-06T19:43:26Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
arXiv Detail & Related papers (2020-06-12T17:12:51Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
We argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning.
We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs)
We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator.
arXiv Detail & Related papers (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.