Equivariant Variational Quantum Eigensolver to detect Phase Transitions through Energy Level Crossings
- URL: http://arxiv.org/abs/2403.07100v2
- Date: Mon, 18 Mar 2024 15:28:12 GMT
- Title: Equivariant Variational Quantum Eigensolver to detect Phase Transitions through Energy Level Crossings
- Authors: Giulio Crognaletti, Giovanni Di Bartolomeo, Michele Vischi, Luciano Loris Viteritti,
- Abstract summary: We introduce an equivariant quantum circuit that preserves the total spin and the translational symmetry to accurately describe singlet and triplet excited states.
We also assess the impact of noise on the variational state, showing that conventional mitigation techniques like Zero Noise Extrapolation reliably restore its physical properties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Level spectroscopy stands as a powerful method for identifying the transition point that delineates distinct quantum phases. Since each quantum phase exhibits a characteristic sequence of excited states, the crossing of energy levels between low-lying excited states offers a reliable mean to estimate the phase transition point. While approaches like the Variational Quantum Eigensolver are useful for approximating ground states of interacting systems using quantum computing, capturing low-energy excitations remains challenging. In our study, we introduce an equivariant quantum circuit that preserves the total spin and the translational symmetry to accurately describe singlet and triplet excited states in the $J_1$-$J_2$ Heisenberg model on a chain, which are crucial for characterizing its transition point. Additionally, we assess the impact of noise on the variational state, showing that conventional mitigation techniques like Zero Noise Extrapolation reliably restore its physical properties.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Adiabatic State Preparation in a Quantum Ising Spin Chain [32.352947507436355]
We report on adiabatic state preparation in the one-dimensional quantum Ising model using ultracold bosons in a tilted optical lattice.
We observe enhanced fluctuations around the transition between paramagnetic and antiferromagnetic states, marking the precursor of quantum critical behavior.
arXiv Detail & Related papers (2024-04-11T05:27:40Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Demonstration of a parity-time symmetry breaking phase transition using superconducting and trapped-ion qutrits [26.16988649207652]
We show that a qutrit, a three-level quantum system, is capable of realizing this non-equilibrium phase transition.
Results indicate the potential advantage of multi-level (qudit) processors in simulating physical effects.
arXiv Detail & Related papers (2023-10-31T13:10:43Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Dynamical quantum phase transitions in a spinor Bose-Einstein condensate
and criticality enhanced quantum sensing [2.3046646540823916]
Quantum phase transitions universally exist in the ground and excited states of quantum many-body systems.
We unravel that both the ground and excited-state quantum phase transitions in spinor condensates can be diagnosed with dynamical phase transitions.
This work advances the exploration of excited-state quantum phase transitions via a scheme that can immediately be applied to a broad class of few-mode quantum systems.
arXiv Detail & Related papers (2022-09-23T05:27:17Z) - Quantum trajectories, interference, and state localisation in dephasing
assisted quantum transport [0.0]
We present a simple and unified understanding of the role of these two key dephasing processes in dephasing assisted transport.
Our results provide insight in understanding quantum transport in molecular semiconductors, artificial lattices and quantum features of excitonic solids.
arXiv Detail & Related papers (2021-11-04T16:35:36Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - Excited-state quantum phase transitions in spinor Bose-Einstein
condensates [0.0]
We introduce spinor Bose-Einstein condensates as a versatile platform for studies of excited-state quantum phases.
Our work opens the way for the experimental characterization of excited-state quantum phases in atomic many-body systems.
arXiv Detail & Related papers (2020-11-05T17:37:46Z) - Classical, semiclassical and quantum signatures of quantum phase
transitions in a (pseudo) relativistic many-body system [0.0]
We identify a (pseudo) relativistic spin-dependent analogue of the celebrated quantum phase transition driven by the formation of a bright soliton in bosonic gases.
We numerically investigate the approach from its finite-size precursors to the sharp quantum phase transition in the thermodynamic limit.
arXiv Detail & Related papers (2020-07-09T09:08:17Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.