Gradient-Based Multi-Objective Deep Learning: Algorithms, Theories, Applications, and Beyond
- URL: http://arxiv.org/abs/2501.10945v3
- Date: Wed, 06 Aug 2025 06:47:04 GMT
- Title: Gradient-Based Multi-Objective Deep Learning: Algorithms, Theories, Applications, and Beyond
- Authors: Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao, Qingfu Zhang, James T. Kwok,
- Abstract summary: This paper provides a comprehensive survey of gradient-based techniques for multi-objective deep learning.<n>We systematically categorize existing algorithms based on their outputs.<n>In addition to this taxonomy, the survey covers theoretical analyses, key applications, practical resources, and highlights open challenges and promising directions for future research.
- Score: 35.78910104369677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many modern deep learning applications require balancing multiple objectives that are often conflicting. Examples include multi-task learning, fairness-aware learning, and the alignment of Large Language Models (LLMs). This leads to multi-objective deep learning, which tries to find optimal trade-offs or Pareto-optimal solutions by adapting mathematical principles from the field of Multi-Objective Optimization (MOO). However, directly applying gradient-based MOO techniques to deep neural networks presents unique challenges, including high computational costs, optimization instability, and the difficulty of effectively incorporating user preferences. This paper provides a comprehensive survey of gradient-based techniques for multi-objective deep learning. We systematically categorize existing algorithms based on their outputs: (i) methods that find a single, well-balanced solution, (ii) methods that generate a finite set of diverse Pareto-optimal solutions, and (iii) methods that learn a continuous Pareto set of solutions. In addition to this taxonomy, the survey covers theoretical analyses, key applications, practical resources, and highlights open challenges and promising directions for future research. A comprehensive list of multi-objective deep learning algorithms is available at https://github.com/Baijiong-Lin/Awesome-Multi-Objective-Deep-Learning.
Related papers
- Aligning Multimodal LLM with Human Preference: A Survey [62.89722942008262]
Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training.
Multimodal Large Language Models (MLLMs) have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data.
However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed.
arXiv Detail & Related papers (2025-03-18T17:59:56Z) - Multi-objective Deep Learning: Taxonomy and Survey of the State of the Art [1.534667887016089]
This survey covers recent advancements in the area of multi-objective deep learning.<n>We introduce a taxonomy of existing methods based on the type of training algorithm as well as the decision maker's needs.<n>All three main learning paradigms supervised learning, unsupervised learning and reinforcement learning are covered, and we also address the recently very popular area of generative modeling.
arXiv Detail & Related papers (2024-12-02T14:51:21Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [51.00436121587591]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.<n>We focus on the case of linear utility functions parametrised by weight vectors w.<n>We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - PMGDA: A Preference-based Multiple Gradient Descent Algorithm [12.600588000788214]
It is desirable in many multi-objective machine learning applications, such as multi-task learning, to find a solution that fits a given preference of a decision maker.
This paper proposes a novel predict-and-correct framework for locating a solution that fits the preference of a decision maker.
arXiv Detail & Related papers (2024-02-14T11:27:31Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - A Review on Methods and Applications in Multimodal Deep Learning [8.152125331009389]
Multimodal deep learning helps to understand and analyze better when various senses are engaged in the processing of information.
This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals.
A fine-grained taxonomy of various multimodal deep learning methods is proposed, elaborating on different applications in more depth.
arXiv Detail & Related papers (2022-02-18T13:50:44Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data.
Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different few-shot learning scenarios.
We present Meta Navigator, a framework that attempts to solve the limitation in few-shot learning by seeking a higher-level strategy.
arXiv Detail & Related papers (2021-09-13T07:20:01Z) - MODRL/D-EL: Multiobjective Deep Reinforcement Learning with Evolutionary
Learning for Multiobjective Optimization [10.614594804236893]
This paper proposes a multiobjective deep reinforcement learning with evolutionary learning algorithm for a typical complex problem called the multiobjective vehicle routing problem with time windows.
The experimental results on MO-VRPTW instances demonstrate the superiority of the proposed algorithm over other learning-based and iterative-based approaches.
arXiv Detail & Related papers (2021-07-16T15:22:20Z) - Recent Advances and Trends in Multimodal Deep Learning: A Review [9.11022096530605]
Multimodal deep learning aims to create models that can process and link information using various modalities.
This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals.
A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth.
arXiv Detail & Related papers (2021-05-24T04:20:45Z) - Multi-Objective Meta Learning [2.9932638148627104]
We propose a unified gradient-based Multi-Objective Meta Learning (MOML) framework.
We show the effectiveness of the proposed MOML framework in several meta learning problems.
arXiv Detail & Related papers (2021-02-14T10:23:09Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - Learning to Stop While Learning to Predict [85.7136203122784]
Many algorithm-inspired deep models are restricted to a fixed-depth'' for all inputs.
Similar to algorithms, the optimal depth of a deep architecture may be different for different input instances.
In this paper, we tackle this varying depth problem using a steerable architecture.
We show that the learned deep model along with the stopping policy improves the performances on a diverse set of tasks.
arXiv Detail & Related papers (2020-06-09T07:22:01Z) - Structure preserving deep learning [1.2263454117570958]
deep learning has risen to the foreground as a topic of massive interest.
There are multiple challenging mathematical problems involved in applying deep learning.
A growing effort to mathematically understand the structure in existing deep learning methods.
arXiv Detail & Related papers (2020-06-05T10:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.