Efficient Assessment of Process Fidelity
- URL: http://arxiv.org/abs/2102.08101v3
- Date: Thu, 29 Apr 2021 11:22:43 GMT
- Title: Efficient Assessment of Process Fidelity
- Authors: Sean Greenaway, Fr\'ed\'eric Sauvage, Kiran E. Khosla and Florian
Mintert
- Abstract summary: We find a faithful approximation to the quantum process fidelity that can be estimated experimentally with reduced effort.
Its practical use is demonstrated with the optimisation of a three-qubit quantum gate on a commercially available quantum processor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate implementation of quantum gates is essential for the realisation
of quantum algorithms and digital quantum simulations. This accuracy may be
increased on noisy hardware through the variational optimisation of gates,
however the experimental realisation of such a protocol is impeded by the large
effort required to estimate the fidelity of an implemented gate. With a
hierarchy of approximations we find a faithful approximation to the quantum
process fidelity that can be estimated experimentally with reduced effort. Its
practical use is demonstrated with the optimisation of a three-qubit quantum
gate on a commercially available quantum processor.
Related papers
- On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing.
Unlike previous information-theoretically secure verification protocols, our approach is implemented entirely on-chip.
Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices.
arXiv Detail & Related papers (2024-10-31T16:54:41Z) - Fast quantum interconnects via constant-rate entanglement distillation [0.0]
We develop constant-rate entanglement distillation methods for quantum interconnects.
We prove the scheme has constant-rate in expectation and numerically optimize to achieve low practical overhead.
We find our optimized schemes outperform existing computationally efficient quantum interconnect schemes by an order of magnitude in relevant regimes.
arXiv Detail & Related papers (2024-08-28T16:54:54Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Sample-efficient verification of continuously-parameterized quantum
gates for small quantum processors [0.0]
We demonstrate a procedure for sample-efficient verification of quantum gates for small quantum processors.
We show that fidelity estimates made via this technique have lower variance than fidelity estimates made via cross-entropy benchmarking.
This provides an experimentally-relevant advantage in sample efficiency when estimating the fidelity loss to some desired precision.
arXiv Detail & Related papers (2022-05-25T22:52:23Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Scalable algorithm simplification using quantum AND logic [18.750481652943005]
We implement a quantum version of AND logic that can reduce the cost, enabling the execution of key quantum circuits.
On a high-scalability superconducting quantum processor, we demonstrate low-depth synthesis of high-fidelity generalized Toffoli gates with up to 8 qubits and Grover's search algorithm in a search space of up to 64 entries.
arXiv Detail & Related papers (2021-12-30T04:25:39Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Estimating gate-set properties from random sequences [0.0]
Current quantum devices are only capable of short unstructured gate sequences followed by native measurements.
A single experiment - random sequence estimation - solves a wealth of estimation problems.
We derive robust channel variants of shadow estimation with close-to-optimal performance guarantees.
arXiv Detail & Related papers (2021-10-25T18:01:25Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.