Sample-efficient verification of continuously-parameterized quantum
gates for small quantum processors
- URL: http://arxiv.org/abs/2205.13074v3
- Date: Mon, 8 May 2023 12:43:05 GMT
- Title: Sample-efficient verification of continuously-parameterized quantum
gates for small quantum processors
- Authors: Ryan Shaffer, Hang Ren, Emiliia Dyrenkova, Christopher G. Yale, Daniel
S. Lobser, Ashlyn D. Burch, Matthew N. H. Chow, Melissa C. Revelle, Susan M.
Clark, Hartmut H\"affner
- Abstract summary: We demonstrate a procedure for sample-efficient verification of quantum gates for small quantum processors.
We show that fidelity estimates made via this technique have lower variance than fidelity estimates made via cross-entropy benchmarking.
This provides an experimentally-relevant advantage in sample efficiency when estimating the fidelity loss to some desired precision.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most near-term quantum information processing devices will not be capable of
implementing quantum error correction and the associated logical quantum gate
set. Instead, quantum circuits will be implemented directly using the physical
native gate set of the device. These native gates often have a parameterization
(e.g., rotation angles) which provide the ability to perform a continuous range
of operations. Verification of the correct operation of these gates across the
allowable range of parameters is important for gaining confidence in the
reliability of these devices. In this work, we demonstrate a procedure for
sample-efficient verification of continuously-parameterized quantum gates for
small quantum processors of up to approximately 10 qubits. This procedure
involves generating random sequences of randomly-parameterized layers of gates
chosen from the native gate set of the device, and then stochastically
compiling an approximate inverse to this sequence such that executing the full
sequence on the device should leave the system near its initial state. We show
that fidelity estimates made via this technique have a lower variance than
fidelity estimates made via cross-entropy benchmarking. This provides an
experimentally-relevant advantage in sample efficiency when estimating the
fidelity loss to some desired precision. We describe the experimental
realization of this technique using continuously-parameterized quantum gate
sets on a trapped-ion quantum processor from Sandia QSCOUT and a
superconducting quantum processor from IBM Q, and we demonstrate the sample
efficiency advantage of this technique both numerically and experimentally.
Related papers
- Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
We introduce a hybrid algorithm that combines quantum optimization with classical machine learning.
We use LASSO for identifying conventional phase transitions and the Transformer model for topological transitions.
Our protocol significantly enhances efficiency and precision, opening new avenues in the integration of quantum computing and machine learning.
arXiv Detail & Related papers (2024-05-14T09:01:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum gradient evaluation through quantum non-demolition measurements [0.0]
We discuss a Quantum Non-Demolition Measurement protocol to estimate the derivatives of a cost function with a quantum computer.
This is a key step for the implementation of variational quantum circuits.
arXiv Detail & Related papers (2023-01-17T19:00:08Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Experimental Bayesian calibration of trapped ion entangling operations [48.43720700248091]
We develop and characterize an efficient calibration protocol to automatically estimate and adjust experimental parameters of the widely used Molmer-Sorensen entangling gate operation.
We experimentally demonstrate a median gate infidelity of $1.3(1)cdot10-3$, requiring only $1200pm500$ experimental cycles, while completing the entire gate calibration procedure in less than one minute.
arXiv Detail & Related papers (2021-12-02T16:59:00Z) - Estimating gate-set properties from random sequences [0.0]
Current quantum devices are only capable of short unstructured gate sequences followed by native measurements.
A single experiment - random sequence estimation - solves a wealth of estimation problems.
We derive robust channel variants of shadow estimation with close-to-optimal performance guarantees.
arXiv Detail & Related papers (2021-10-25T18:01:25Z) - Proof-of-principle experimental demonstration of quantum gate
verification [1.9852463786440127]
Recently, a scheme called quantum gate verification (QGV) has been proposed, which can verifies quantum gates with near-optimal efficiency.
We show that for a single-qubit quantum gate, only $sim300$ samples are needed to confirm the fidelity of the quantum gate to be at least $97%$ with a $99%$ confidence level.
The QGV method has the potential to be widely used for the evaluation of quantum devices in various quantum information applications.
arXiv Detail & Related papers (2021-07-28T16:20:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.