論文の概要: Social Network Analysis: From Graph Theory to Applications with Python
- arxiv url: http://arxiv.org/abs/2102.10014v1
- Date: Fri, 5 Feb 2021 18:46:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 00:30:05.765342
- Title: Social Network Analysis: From Graph Theory to Applications with Python
- Title(参考訳): ソーシャルネットワーク分析:グラフ理論からPythonアプリケーションへ
- Authors: Dmitri Goldenberg
- Abstract要約: ソーシャルネットワーク分析は、ネットワークとグラフ理論を使用して社会構造を調査するプロセスです。
これは、構造的ソーシャルネットワークを分析するための様々な技術と、これらの構造で観察される基盤となる力学やパターンを説明することを目的とした理論を組み合わせる。
- 参考スコア(独自算出の注目度): 1.027974860479791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social network analysis is the process of investigating social structures
through the use of networks and graph theory. It combines a variety of
techniques for analyzing the structure of social networks as well as theories
that aim at explaining the underlying dynamics and patterns observed in these
structures. It is an inherently interdisciplinary field which originally
emerged from the fields of social psychology, statistics and graph theory. This
talk will covers the theory of social network analysis, with a short
introduction to graph theory and information spread. Then we will deep dive
into Python code with NetworkX to get a better understanding of the network
components, followed-up by constructing and implying social networks from real
Pandas and textual datasets. Finally we will go over code examples of practical
use-cases such as visualization with matplotlib, social-centrality analysis and
influence maximization for information spread.
- Abstract(参考訳): ソーシャル・ネットワーク分析(social network analysis)は、ネットワークとグラフ理論を用いて社会構造を調査するプロセスである。
これは、ソーシャルネットワークの構造を分析するための様々な技術と、これらの構造で観察される基礎となる力学とパターンを説明する理論を組み合わせている。
それは本質的に学際的な分野であり、もともと社会心理学、統計学、グラフ理論の分野から生まれた。
この講演では、グラフ理論と情報拡散の簡単な紹介とともに、ソーシャルネットワーク分析の理論を取り上げる予定である。
続いて、実際のパンダやテキストデータセットからソーシャルネットワークを構築し、暗示することで、ネットワークコンポーネントをよりよく理解するために、networkxでpythonコードを深く掘り下げます。
最後に、matplotlibによる可視化、社会集中分析、情報拡散に対する影響最大化といった実用的なユースケースのコード例を取り上げる。
関連論文リスト
- Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - Link Prediction for Social Networks using Representation Learning and
Heuristic-based Features [1.279952601030681]
ソーシャルネットワークのリンク不足を効率的に予測することは、現代の様々なビジネスアプリケーションに役立つ。
本稿では,ソーシャルネットワークにおけるノードとエッジの表現を生成するための様々な特徴抽出手法について検討する。
論文 参考訳(メタデータ) (2024-03-13T15:23:55Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
我々は、グラフ領域で以前に検討されていない視点から帰属法を評価する:再学習。
中心となる考え方は、属性によって識別される重要な(あるいは重要でない)関係でネットワークを再訓練することである。
我々は4つの最先端GNN属性法と5つの合成および実世界のグラフ分類データセットについて分析を行った。
論文 参考訳(メタデータ) (2024-01-01T02:03:35Z) - Everything is Connected: Graph Neural Networks [0.0]
この短い調査は、グラフ表現学習の領域において、読者が重要な概念を同化できるようにすることを目的としている。
この短い調査の主な目的は、読者がその領域における重要な概念を同化させ、関連する分野との適切なコンテキストにおける位置グラフ表現学習を可能にすることである。
論文 参考訳(メタデータ) (2023-01-19T18:09:43Z) - Classification of vertices on social networks by multiple approaches [1.370151489527964]
ソーシャルネットワークの場合、個別のコミュニティのラベルを評価することが不可欠である。
これらのインタラクションベースのエンティティそれぞれに対して、テストベンチリポジトリとして、ソーシャルグラフ、メーリングデータセット、および2つの引用セットが選択される。
本論文は,最も有用な手法だけでなく,グラフニューラルネットワークの動作方法も検討した。
論文 参考訳(メタデータ) (2023-01-13T09:42:55Z) - Spectral Embedding of Graph Networks [76.27138343125985]
ローカルノードの類似性と接続性、グローバル構造をトレードオフする教師なしグラフ埋め込みを導入する。
埋め込みは一般化されたグラフ Laplacian に基づいており、固有ベクトルは1つの表現においてネットワーク構造と近傍近傍の両方をコンパクトにキャプチャする。
論文 参考訳(メタデータ) (2020-09-30T04:59:10Z) - Learning-based link prediction analysis for Facebook100 network [0.0]
本稿では,Facebook100ネットワークにおけるリンク予測の包括的解析を行う。
我々は,異なる特徴集合に基づいて,複数の機械学習アルゴリズムの性能と評価を行った。
論文 参考訳(メタデータ) (2020-08-01T18:03:57Z) - Recursive Social Behavior Graph for Trajectory Prediction [49.005219590582676]
我々は、グループベースのアノテーションによって管理される社会表現を、再帰的社会行動グラフと呼ばれる社会行動グラフに定式化する。
再帰的社会行動グラフ(Recursive Social Behavior Graph)のガイダンスにより、EDHおよびUCYデータセットにおける最先端の手法をADEの11.1%、FDEの10.8%で上回る。
論文 参考訳(メタデータ) (2020-04-22T06:01:48Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
グラフデータのマイニングはコンピュータ科学においてポピュラーな研究トピックとなっている。
ネットワークデータの膨大な量は、効率的な分析に大きな課題をもたらしている。
これはグラフ表現の出現を動機付け、グラフを低次元ベクトル空間にマッピングする。
論文 参考訳(メタデータ) (2020-01-02T02:13:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。