Uncertainty Maximization in Partially Observable Domains: A Cognitive
Perspective
- URL: http://arxiv.org/abs/2102.11232v2
- Date: Tue, 23 Feb 2021 15:02:21 GMT
- Title: Uncertainty Maximization in Partially Observable Domains: A Cognitive
Perspective
- Authors: Mirza Ramicic and Andrea Bonarini
- Abstract summary: This work exploits the properties of the learning systems defined over partially observable domains.
Adaptive masking of the observation space enabled a significant improvement in convergence of temporal difference algorithms.
- Score: 2.208242292882514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Faced with an ever-increasing complexity of their domains of application,
artificial learning agents are now able to scale up in their ability to process
an overwhelming amount of information coming from their interaction with an
environment. However, this process of scaling does come with a cost of encoding
and processing an increasing amount of redundant information that is not
necessarily beneficial to the learning process itself. This work exploits the
properties of the learning systems defined over partially observable domains by
selectively focusing on the specific type of information that is more likely to
express the causal interaction among the transitioning states of the
environment. Adaptive masking of the observation space based on the
$\textit{temporal difference displacement}$ criterion enabled a significant
improvement in convergence of temporal difference algorithms defined over a
partially observable Markov process.
Related papers
- SCENT: Robust Spatiotemporal Learning for Continuous Scientific Data via Scalable Conditioned Neural Fields [11.872753517172555]
We present SCENT, a novel framework for scalable and continuity-informed modeling learning.
SCENT unifies representation, reconstruction, and forecasting within a single architecture.
We validate SCENT through extensive simulations and real-world experiments, demonstrating state-of-the-art performance.
arXiv Detail & Related papers (2025-04-16T17:17:31Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection.
We reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making.
arXiv Detail & Related papers (2023-09-29T06:48:16Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Dynamic deep-reinforcement-learning algorithm in Partially Observed
Markov Decision Processes [6.729108277517129]
This study shows the benefit of action sequence inclusion in order to solve Partially Observable Markov Decision Process.
The developed algorithms showed enhanced robustness of controller performance against different types of external disturbances.
arXiv Detail & Related papers (2023-07-29T08:52:35Z) - Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by
Leveraging Lightweight All-ConvNet and Transfer Learning [17.535392299244066]
Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces.
The data variability between inter-session and inter-subject scenarios presents a great challenge.
Existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability.
We propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition
arXiv Detail & Related papers (2023-05-13T21:47:55Z) - SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained
Image Categorization [24.286426387100423]
We propose a method that captures subtle changes by aggregating context-aware features from most relevant image-regions.
Our approach is inspired by the recent advancement in self-attention and graph neural networks (GNNs)
It outperforms the state-of-the-art approaches by a significant margin in recognition accuracy.
arXiv Detail & Related papers (2022-09-05T19:43:15Z) - Invariant Causal Mechanisms through Distribution Matching [86.07327840293894]
In this work we provide a causal perspective and a new algorithm for learning invariant representations.
Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization.
arXiv Detail & Related papers (2022-06-23T12:06:54Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Human Activity Recognition using Attribute-Based Neural Networks and
Context Information [61.67246055629366]
We consider human activity recognition (HAR) from wearable sensor data in manual-work processes.
We show how context information can be integrated systematically into a deep neural network-based HAR system.
We empirically show that our proposed architecture increases HAR performance, compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T06:08:25Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
We argue that current fixed-sized-temporal kernels in 3 convolutional neural networks (CNNDs) can be improved to better deal with temporal variations in the input.
We study how we can better handle between classes of actions, by enhancing their feature differences over different layers of the architecture.
The proposed approaches are evaluated on several benchmark action recognition datasets and show competitive results.
arXiv Detail & Related papers (2021-10-05T15:39:11Z) - Learning Multivariate Hawkes Processes at Scale [17.17906360554892]
We show that our approach allows to compute the exact likelihood and gradients of an MHP -- independently of the ambient dimensions of the underlying network.
We show on synthetic and real-world datasets that our model does not only achieve state-of-the-art predictive results, but also improves runtime performance by multiple orders of magnitude.
arXiv Detail & Related papers (2020-02-28T01:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.