論文の概要: Measuring Privacy Loss in Distributed Spatio-Temporal Data
- arxiv url: http://arxiv.org/abs/2402.11526v1
- Date: Sun, 18 Feb 2024 09:53:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:56:22.667678
- Title: Measuring Privacy Loss in Distributed Spatio-Temporal Data
- Title(参考訳): 分散時空間データにおけるプライバシ損失の測定
- Authors: Tatsuki Koga, Casey Meehan, Kamalika Chaudhuri,
- Abstract要約: 本稿では,情報提供者による位置復元攻撃に対する代替プライバシ損失を提案する。
実データと合成データに関する我々の実験は、分散環境での個人のプライバシー侵害に対する直感を反映していることを示している。
- 参考スコア(独自算出の注目度): 26.891854386652266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistics about traffic flow and people's movement gathered from multiple geographical locations in a distributed manner are the driving force powering many applications, such as traffic prediction, demand prediction, and restaurant occupancy reports. However, these statistics are often based on sensitive location data of people, and hence privacy has to be preserved while releasing them. The standard way to do this is via differential privacy, which guarantees a form of rigorous, worst-case, person-level privacy. In this work, motivated by several counter-intuitive features of differential privacy in distributed location applications, we propose an alternative privacy loss against location reconstruction attacks by an informed adversary. Our experiments on real and synthetic data demonstrate that our privacy loss better reflects our intuitions on individual privacy violation in the distributed spatio-temporal setting.
- Abstract(参考訳): 複数の地理的な場所から分散的に収集された交通の流れや人々の移動に関する統計は、交通予測、需要予測、レストラン占領報告など、多くのアプリケーションを動かす原動力である。
しかし、これらの統計は、しばしば人々のセンシティブな位置情報に基づいており、したがって、そのデータを公開している間にプライバシーを保持する必要がある。
差分プライバシーは、厳格で最悪の人格レベルのプライバシーを保証します。
本研究は,分散位置情報アプリケーションにおける差分プライバシーの非直感的特徴を動機として,情報提供者による位置復元攻撃に対する代替的プライバシー損失を提案する。
実データと合成データを用いた実験により、分散時空間設定における個人のプライバシー侵害に対する直感を、プライバシーの損失がより良く反映していることが示される。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - A Survey on Differential Privacy for SpatioTemporal Data in Transportation Research [0.9790236766474202]
交通機関では、時空間データ収集が急増している。
このようなデータにおける微分プライバシーの最近の発展は、応用プライバシーの研究につながっている。
個人情報を公開することなく、研究や推論におけるこのようなデータの必要性に対処するために、重要な研究が提案されている。
論文 参考訳(メタデータ) (2024-07-18T03:19:29Z) - Protecting Personalized Trajectory with Differential Privacy under Temporal Correlations [37.88484505367802]
本稿では,パーソナライズされたトラジェクトリプライバシ保護機構(PTPPM)を提案する。
ヒルベルト曲線に基づく最小距離探索アルゴリズムを用いて,各位置の保護位置集合(PLS)を同定する。
我々は位置摂動のための新しいPermute-and-Flip機構を提案し、データ公開プライバシー保護における初期応用を位置摂動機構にマッピングした。
論文 参考訳(メタデータ) (2024-01-20T12:59:08Z) - Where you go is who you are -- A study on machine learning based
semantic privacy attacks [3.259843027596329]
本稿では,2つの攻撃シナリオ,すなわち位置分類とユーザプロファイリングを体系的に分析する。
Foursquareのデータセットと追跡データの実験は、高品質な空間情報の悪用の可能性を示している。
以上の結果から,追跡データや空間文脈データのデータベース化のリスクが指摘される。
論文 参考訳(メタデータ) (2023-10-26T17:56:50Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Towards Sparse Federated Analytics: Location Heatmaps under Distributed
Differential Privacy with Secure Aggregation [15.569382274788234]
我々は、数百万のユーザデバイスから分散化されたデータにまたがって、位置情報のヒートマップをプライベートに生成するスケーラブルなアルゴリズムを設計する。
データの正確性を維持しつつ、ユーザのデバイス上でのリソース消費を最小限に抑えながら、データがサービスプロバイダに表示される前に、差分プライバシを確保することを目的としている。
論文 参考訳(メタデータ) (2021-11-03T17:19:05Z) - Location Trace Privacy Under Conditional Priors [22.970796265042246]
条件依存型データのプライバシー損失を予測する上で,R'enyi分散に基づくプライバシフレームワークを提案する。
このプライバシーを条件付きで達成するためのアルゴリズムを実証します。
論文 参考訳(メタデータ) (2021-02-23T21:55:34Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。