Observation of vacuum-induced collective quantum beats
- URL: http://arxiv.org/abs/2102.11982v1
- Date: Tue, 23 Feb 2021 23:21:46 GMT
- Title: Observation of vacuum-induced collective quantum beats
- Authors: Hyok Sang Han, Ahreum Lee, Kanupriya Sinha, Fredrik K. Fatemi, Steven
L. Rolston
- Abstract summary: We demonstrate collectively enhanced vacuum-induced quantum beat dynamics from a three-level V-type atomic system.
The work is also the first experimental illustration of quantum beats arising from atoms initially prepared in a single excited level.
- Score: 1.0499611180329804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate collectively enhanced vacuum-induced quantum beat dynamics
from a three-level V-type atomic system. Exciting a dilute atomic gas of
magneto-optically trapped $^{85}$Rb atoms with a weak drive resonant on one of
the transitions, we observe the forward-scattered field after a sudden shut-off
of the laser. The subsequent radiative dynamics, measured for various optical
depths of the atomic cloud, exhibits superradiant decay rates, as well as
collectively enhanced quantum beats. Our work is also the first experimental
illustration of quantum beats arising from atoms initially prepared in a single
excited level as a result of the vacuum-induced coupling between excited
levels.
Related papers
- Quantum Vibronic Effects on the Excitation Energies of the
Nitrogen-Vacancy Center in Diamond [0.0]
We investigate the impact of quantum vibronic coupling on the electronic properties of solid-state spin defects using methods and first principles molecular dynamics with a quantum thermostat.
We found a significant dynamic Jahn-Teller splitting of the doubly degenerate single-particle levels within the diamond's band gap, even at 0 K, with a magnitude exceeding 180 meV.
arXiv Detail & Related papers (2024-01-12T18:30:29Z) - Observation of superradiant bursts in a cascaded quantum system [0.0]
Dicke superradiance describes the collective radiative decay of a fully inverted ensemble of two-level atoms.
We experimentally investigate this effect for a chiral, i.e.,direction-dependent light--matter coupling.
Our results shed light on the collective radiative dynamics of cascaded quantum many-body systems.
arXiv Detail & Related papers (2022-11-16T14:36:10Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror [62.997667081978825]
We evaluate the probability of (de-)excitation and photon emission from a neutral, moving, non-relativistic atom, coupled to a quantum electromagnetic field and in the presence of a thin, perfectly conducting plane ("mirror")
Results extend to a more realistic model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum field.
arXiv Detail & Related papers (2022-07-06T20:54:59Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Effects of spatial quantization and Rabi-shifted resonances in single
and double excitation of quantum wells and wires induced by few-photon
optical field [0.0]
We study the dynamics of Frenkel excitons and bi-excitons induced by few photon quantum light in a quantum well or wire of finite size.
The eigenenergies and eigenfunctions of the coupled exciton-photon states in a multiatomic system are found.
The role of spatial confinement as well as the energy quantization effects in 1D and 2D cases is analyzed.
arXiv Detail & Related papers (2021-12-08T10:39:33Z) - Observation of quasiparticle pair-production and quantum entanglement in
atomic quantum gases quenched to an attractive interaction [0.0]
We report observation of quasiparticle pair-production and characterize quantum entanglement created by a modulational instability in an atomic superfluid.
By quenching the atomic interaction to attractive and then back to weakly repulsive, we produce correlated quasiparticles.
We observe large amplitude growth in the power spectrum and subsequent coherent oscillations in a wide spatial frequency band within our resolution limit.
arXiv Detail & Related papers (2021-02-22T17:45:04Z) - Motion induced by asymmetric excitation of the quantum vacuum [62.997667081978825]
We study the effect of excitation of the quantum vacuum field induced by its coupling with a moving object.
In the present model, this excitation occurs asymmetrically on different sides of the object.
arXiv Detail & Related papers (2020-09-16T02:02:42Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.