論文の概要: Point Cloud Upsampling and Normal Estimation using Deep Learning for
Robust Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2102.13391v1
- Date: Fri, 26 Feb 2021 10:58:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-01 20:05:31.151710
- Title: Point Cloud Upsampling and Normal Estimation using Deep Learning for
Robust Surface Reconstruction
- Title(参考訳): 深層学習によるロバスト表面再構成のためのポイントクラウドアップサンプリングと正規推定
- Authors: Rajat Sharma, Tobias Schwandt, Christian Kunert, Steffen Urban and
Wolfgang Broll
- Abstract要約: ポイントクラウドアップサンプリングのための新しいディープラーニングアーキテクチャを紹介します。
対応する点正規度を持つ低密度の雑音点雲を用いて、高密度および随伴点正規度を持つ点雲を推定する。
- 参考スコア(独自算出の注目度): 2.821829060100186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reconstruction of real-world surfaces is on high demand in various
applications. Most existing reconstruction approaches apply 3D scanners for
creating point clouds which are generally sparse and of low density. These
points clouds will be triangulated and used for visualization in combination
with surface normals estimated by geometrical approaches. However, the quality
of the reconstruction depends on the density of the point cloud and the
estimation of the surface normals. In this paper, we present a novel deep
learning architecture for point cloud upsampling that enables subsequent stable
and smooth surface reconstruction. A noisy point cloud of low density with
corresponding point normals is used to estimate a point cloud with higher
density and appendant point normals. To this end, we propose a compound loss
function that encourages the network to estimate points that lie on a surface
including normals accurately predicting the orientation of the surface. Our
results show the benefit of estimating normals together with point positions.
The resulting point cloud is smoother, more complete, and the final surface
reconstruction is much closer to ground truth.
- Abstract(参考訳): 実世界の表面の再構築は様々な応用において需要が高い。
既存のレコンストラクション・アプローチのほとんどは、3dスキャナーを用いて、一般的には希薄で密度の低い点雲を作成する。
これらの点雲は三角測量され、幾何学的アプローチによって推定される表面正規値と組み合わせて可視化に使用される。
しかし、再構成の品質は点群の密度と表面正規度の推定に依存する。
本論文では,以降の安定かつ円滑な表面再構成を可能にする点群アップサンプリングのための深層学習アーキテクチャを提案する。
対応する点正規度を持つ低密度の雑音点雲を用いて、高密度および随伴点正規度を持つ点雲を推定する。
そこで本研究では,ネットワークが面の向きを正確に予測する正規性を含む面上の点を推定することを促す複合損失関数を提案する。
以上の結果から,正常度を点位置とともに推定する利点が示された。
結果として得られるポイントの雲はより滑らか、より完全であり、最終的な表面の再建は地上の真実に大いに近いです。
関連論文リスト
- Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
Voxel-based Network (textbfPU-VoxelNet) を用いた任意のスケールのクラウド・アップサンプリング・フレームワークを提案する。
ボクセル表現から継承された完全性と規則性により、ボクセルベースのネットワークは3次元表面を近似する事前定義されたグリッド空間を提供することができる。
密度誘導グリッド再サンプリング法を開発し、高忠実度点を生成するとともに、サンプリング出力を効果的に回避する。
論文 参考訳(メタデータ) (2024-03-08T07:31:14Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
3次元点雲の正規推定は3次元幾何処理の基本的な課題である。
我々は,ニューラルネットワークが入力点雲に適合することを奨励する,ニューラルグラデーション関数の学習のための新しいパラダイムを導入する。
広範に使用されているベンチマークの優れた結果から,本手法は非指向性および指向性正常推定タスクにおいて,より正確な正規性を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-01T09:25:29Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
スパース点雲から離散曲面を再構成する問題に対処する学習ベース手法であるGeoUDFを提案する。
具体的には、UDFのための幾何誘導学習法とその勾配推定を提案する。
予測されたUDFから三角形メッシュを抽出するために,カスタマイズされたエッジベースマーチングキューブモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-30T06:02:01Z) - Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors [52.25114448281418]
現在の方法では、接地距離や点正規化なしに単一点雲から符号付き距離関数 (Signed Distance Function, SDF) を学習することで、表面を再構築することができる。
そこで本稿では, 表面上の粗い点雲から高精度な表面を復元することを提案する。
本手法は, 接地距離や点正規化を伴わずに, 単一のスパース点雲からSDFを学習することができる。
論文 参考訳(メタデータ) (2022-04-22T09:45:20Z) - AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds [31.641383879577894]
本稿では,AdaFit という,雑音と密度の変動を伴う点雲に対処可能な,点雲上でのロバストな正規推定のためのニューラルネットワークを提案する。
既存の研究では、ネットワークを用いて最小表面の重み付けの点での重みを学習し、正規性を推定している。
そこで本研究では,通常の推定精度を向上させるために,新たなオフセット予測を付加する,シンプルで効果的な解を提案する。
論文 参考訳(メタデータ) (2021-08-12T16:37:24Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
我々はPMP-Netと呼ばれる新しいニューラルネットワークを設計し、地球移動体の動作を模倣する。
不完全な入力の各点を移動させ、ポイントクラウドを完結させ、ポイント移動パスの合計距離が最も短くなる。
点レベルの厳密でユニークな対応を学習し、不完全な形状と完全なターゲットの間の詳細なトポロジーと構造的関係を捉えることができる。
論文 参考訳(メタデータ) (2020-12-07T01:34:38Z) - RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction [19.535169371240073]
本稿では,高密度物体表面を直接点雲から検出・再構成するRfD-Netを提案する。
インスタンス再構成を大域的オブジェクトローカライゼーションと局所形状予測に分離する。
我々のアプローチは、オブジェクト再構成において、最先端の技術を一貫して上回り、メッシュIoUの11以上を改善します。
論文 参考訳(メタデータ) (2020-11-30T12:58:05Z) - Skeleton-bridged Point Completion: From Global Inference to Local
Adjustment [48.2757171993437]
形状整形のための骨格ブリッジ型点完備ネットワーク(SK-PCN)を提案する。
部分スキャンにより,まずその3次元骨格を予測し,大域構造を求める。
形状の完備化を構造推定と表面再構成に分離し,学習の難易度を緩和する。
論文 参考訳(メタデータ) (2020-10-14T22:49:30Z) - Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance [30.863194319818223]
既存のポイントへの接続情報のみを付加することで、インプットポイントクラウドを可能な限り活用することを提案する。
私たちの重要なイノベーションはローカル接続のサロゲートであり、本質的/外生的メトリクスを比較して計算します。
提案手法は, 詳細を保存できるだけでなく, あいまいな構造を扱えるだけでなく, 目に見えないカテゴリに対して強い一般化性を持つことを示す。
論文 参考訳(メタデータ) (2020-07-17T22:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。