Error-correction properties of an interacting topological insulator
- URL: http://arxiv.org/abs/2103.00011v1
- Date: Fri, 26 Feb 2021 19:00:01 GMT
- Title: Error-correction properties of an interacting topological insulator
- Authors: Amit Jamadagni and Hendrik Weimer
- Abstract summary: We analyze the phase diagram of a topological insulator model including antiferromagnetic interactions in the form of an extended Su-Schrieffer Heeger model.
We show that the necessary error correction statistics can be obtained efficiently using a Monte-Carlo sampling of a matrix product state representation of the ground state wave function.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the phase diagram of a topological insulator model including
antiferromagnetic interactions in the form of an extended Su-Schrieffer Heeger
model. To this end, we employ a recently introduced operational definition of
topological order based on the ability of a system to perform topological error
correction. We show that the necessary error correction statistics can be
obtained efficiently using a Monte-Carlo sampling of a matrix product state
representation of the ground state wave function. Specifically, we identify two
distinct symmetry-protected topological phases corresponding to two different
fully dimerized reference states. Finally, we extend the notion of error
correction to classify thermodynamic phases to those exhibiting local order
parameters, finding a topologically trivial antiferromagnetic phase for
sufficiently strong interactions.
Related papers
- Efficient computation of topological order [0.0]
We analyze the computational aspects of detecting topological order in a quantum many-body system.
We find exponential scaling with system size for the former and scaling for the latter.
Our strategy can be readily generalized to higher dimensions and systems out of equilibrium.
arXiv Detail & Related papers (2024-09-19T12:30:27Z) - Predicting Topological Entanglement Entropy in a Rydberg analog simulator [0.0]
This work focuses on the dynamical preparation of a quantum-spin-liquid state on a Rydberg-atom simulator.
The flexibility of our approach does not only allow one to match the physically correct form of the Rydberg-atom Hamiltonian but also the relevant lattice topology.
We show that, while the simulated state exhibits (global) topological order and local properties resembling those of a resonating-valence-bond (RVB) state, it lacks the latter's characteristic topological entanglement entropy signature.
arXiv Detail & Related papers (2024-06-28T12:27:42Z) - Dynamical detection of mean-field topological phases in an interacting
Chern insulator [11.848843951626527]
We propose a scheme based on quench dynamics to detect the mean-field topological phase diagram of an insulator.
We find two characteristic times $t_s$ and $t_c$ which capture the emergence of dynamical self-consistent particle number density.
The number of mean-field topological phase is determined by the spin polarizations of four Dirac points at the time $t_s$.
arXiv Detail & Related papers (2022-06-22T12:37:15Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Localization transition induced by programmable disorder [0.24629531282150877]
Many-body localization occurs on a spin-1/2 transverse-field Ising model.
We observe a transition from an ergodic phase to a non-thermal phase for individual energy eigenstates.
We realize the time-independent disordered Ising Hamiltonian experimentally on a D-Wave 2000Q programmable quantum annealer.
arXiv Detail & Related papers (2021-08-15T15:37:32Z) - A supervised learning algorithm for interacting topological insulators
based on local curvature [6.281776745576886]
We introduce a supervised machine learning scheme that uses only the curvature function at the high symmetry points as input data.
We show that an artificial neural network trained with the noninteracting data can accurately predict all topological phases in the interacting cases.
Intriguingly, the method uncovers a ubiquitous interaction-induced topological quantum multicriticality.
arXiv Detail & Related papers (2021-04-22T18:00:00Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.