Open-set Intersection Intention Prediction for Autonomous Driving
- URL: http://arxiv.org/abs/2103.00140v1
- Date: Sat, 27 Feb 2021 06:38:26 GMT
- Title: Open-set Intersection Intention Prediction for Autonomous Driving
- Authors: Fei Li, Xiangxu Li, Shiwei Fan, Hongbo Zhang and Jun Luo
- Abstract summary: We formulate the prediction of intention at intersections as an open-set prediction problem.
We capture map-centric features that correspond to intersection structures under a spatial-temporal graph representation.
We use two MAAMs (mutually auxiliary attention module) to predict a target that best matches intersection elements in map-centric feature space.
- Score: 9.494867137826397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intention prediction is a crucial task for Autonomous Driving (AD). Due to
the variety of size and layout of intersections, it is challenging to predict
intention of human driver at different intersections, especially unseen and
irregular intersections. In this paper, we formulate the prediction of
intention at intersections as an open-set prediction problem that requires
context specific matching of the target vehicle state and the diverse
intersection configurations that are in principle unbounded. We capture
map-centric features that correspond to intersection structures under a
spatial-temporal graph representation, and use two MAAMs (mutually auxiliary
attention module) that cover respectively lane-level and exitlevel intentions
to predict a target that best matches intersection elements in map-centric
feature space. Under our model, attention scores estimate the probability
distribution of the openset intentions that are contextually defined by the
structure of the current intersection. The proposed model is trained and
evaluated on simulated dataset. Furthermore, the model, trained on simulated
dataset and without any fine tuning, is directly validated on in-house
real-world dataset collected at 98 realworld intersections and exhibits
satisfactory performance,demonstrating the practical viability of our approach.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Heterogeneous Graph-based Trajectory Prediction using Local Map Context
and Social Interactions [47.091620047301305]
We present a novel approach for vector-based trajectory prediction that addresses shortcomings by leveraging three crucial sources of information.
First, we model interactions between traffic agents by a semantic scene graph, that accounts for the nature and important features of their relation.
Second, we extract agent-centric image-based map features to model the local map context.
arXiv Detail & Related papers (2023-11-30T13:46:05Z) - Pixel State Value Network for Combined Prediction and Planning in
Interactive Environments [9.117828575880303]
This work proposes a deep learning methodology to combine prediction and planning.
A conditional GAN with the U-Net architecture is trained to predict two high-resolution image sequences.
Results demonstrate intuitive behavior in complex situations, such as lane changes amidst conflicting objectives.
arXiv Detail & Related papers (2023-10-11T17:57:13Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps [29.67295706224478]
In this paper, we aim to forecast a future trajectory distribution of a moving agent in the real world, given the social scene images and historical trajectories.
We learn the distribution with symmetric cross-entropy using occupancy grid maps as an explicit and scene-compliant approximation to the ground-truth distribution.
In experiments, our method achieves state-of-the-art performance on the Stanford Drone dataset and Intersection Drone dataset.
arXiv Detail & Related papers (2022-03-31T09:24:32Z) - Self-Point-Flow: Self-Supervised Scene Flow Estimation from Point Clouds
with Optimal Transport and Random Walk [59.87525177207915]
We develop a self-supervised method to establish correspondences between two point clouds to approximate scene flow.
Our method achieves state-of-the-art performance among self-supervised learning methods.
arXiv Detail & Related papers (2021-05-18T03:12:42Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Deep Learning with Attention Mechanism for Predicting Driver Intention
at Intersection [2.1699196439348265]
The proposed solution is promising to be applied in advanced driver assistance systems (ADAS) and as part of active safety system of autonomous vehicles.
The performance of the proposed approach is evaluated on a naturalistic driving dataset and results show that our method achieves high accuracy as well as outperforms other methods.
arXiv Detail & Related papers (2020-06-10T16:12:00Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z) - Learning Probabilistic Intersection Traffic Models for Trajectory
Prediction [8.536503379429032]
This work presents a Gaussian process based probabilistic traffic model that is used to quantify vehicle behaviors in an intersection.
The method is demonstrated on a set of time-series position trajectories.
To show the applicability of the model, the test trajectories are classified with only partial observations.
arXiv Detail & Related papers (2020-02-05T19:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.