The impossibility of Landauer's bound for almost every quantum state
- URL: http://arxiv.org/abs/2103.02337v1
- Date: Wed, 3 Mar 2021 11:35:50 GMT
- Title: The impossibility of Landauer's bound for almost every quantum state
- Authors: Paul M. Riechers and Mile Gu
- Abstract summary: We prove that Landauer's bound is unachievable for nearly every initial state, for any reliable reset mechanism.
For the case of qubit reset, we find the minimally dissipative state analytically for any reliable reset protocol.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The thermodynamic cost of resetting an arbitrary initial state to a
particular desired state is lower bounded by Landauer's bound. However, here we
demonstrate that this lower bound is necessarily unachievable for nearly every
initial state, for any reliable reset mechanism. Since local heating threatens
rapid decoherence, this issue is of substantial importance beyond mere energy
efficiency. For the case of qubit reset, we find the minimally dissipative
state analytically for any reliable reset protocol, in terms of the
entropy-flow vector introduced here. This allows us to verify a recent theorem
about initial-state dependence of entropy production for any finite-time
transformation, as it pertains to quantum state preparation.
Related papers
- General detectability measure [53.64687146666141]
Distinguishing resource states from resource-free states is a fundamental task in quantum information.
We derived the optimal exponential decay rate of the failure probability for detecting a given $n$-tensor product state.
arXiv Detail & Related papers (2025-01-16T05:39:22Z) - Typical thermalization of low-entanglement states [0.29998889086656577]
We prove thermalization of low entanglement initial states under precise conditions.
We define a random energy smoothing on local Hamiltonians that leads to local thermalization when the initial state has low entanglement.
arXiv Detail & Related papers (2024-03-26T18:00:05Z) - Initial-state-dependent quantum speed limit for dissipative state
preparation: Framework and optimization [6.211723927647019]
We focus on a Markovian dissipative state preparation scheme where the prepared state is one of the energy eigenstates.
We derive an initial-state-dependent quantum speed limit (QSL) that offers a more refined measure of the actual evolution time.
We demonstrate the effectiveness of our strategy in a dissipative Rydberg atom system for preparing the Bell state.
arXiv Detail & Related papers (2023-03-23T00:19:32Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Erasure tolerant quantum memory and the quantum null energy condition in
holographic systems [0.41998444721319217]
Investigating principles for storage of quantum information at finite temperature with minimal need for active error correction is an active area of research.
We study an explicit encoding of a logical qubit into two similar chirally propagating excitations of finite von-Neumann entropy on a finite temperature background.
We show that the quantum null energy condition gives analytic results for the minimal finite temperature needed for the deletion.
arXiv Detail & Related papers (2022-01-31T19:00:04Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Lower Bound on Irreversibility in Thermal Relaxation of Open Quantum
Systems [4.111899441919164]
Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower-bounded by a relative entropy between the unitarily-evolved state and the final state.
Our finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.
arXiv Detail & Related papers (2021-02-15T05:17:11Z) - Initial-State Dependence of Thermodynamic Dissipation for any Quantum
Process [0.0]
We show new exact results about the nonequilibrium thermodynamics of open quantum systems at arbitrary timescales.
For any finite-time process with a fixed initial environment, we show that the contraction of the system's distinction exactly quantifies its thermodynamic dissipation.
arXiv Detail & Related papers (2020-02-26T12:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.