Typical thermalization of low-entanglement states
- URL: http://arxiv.org/abs/2403.18007v4
- Date: Mon, 2 Sep 2024 14:31:36 GMT
- Title: Typical thermalization of low-entanglement states
- Authors: Christian Bertoni, Clara Wassner, Giacomo Guarnieri, Jens Eisert,
- Abstract summary: We prove thermalization of low entanglement initial states under precise conditions.
We define a random energy smoothing on local Hamiltonians that leads to local thermalization when the initial state has low entanglement.
- Score: 0.29998889086656577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proving thermalization from the unitary evolution of a closed quantum system is one of the oldest questions that is still nowadays only partially resolved. Several efforts have led to various formulations of what is called the eigenstate thermalization hypothesis, which leads to thermalization under certain conditions on the initial states. These conditions, however, are sensitive to the precise formulation of the hypothesis. In this work, we focus on the important case of low entanglement initial states, which are operationally accessible in many natural physical settings, including experimental schemes for testing thermalization and for quantum simulation. We prove thermalization of these states under precise conditions that have operational significance. More specifically, motivated by arguments of unavoidable finite resolution, we define a random energy smoothing on local Hamiltonians that leads to local thermalization when the initial state has low entanglement. Finally we show that such a transformation affects neither the Gibbs state locally nor, under generic smoothness conditions on the spectrum, the short-time dynamics.
Related papers
- Thermalization in Trapped Bosonic Systems With Disorder [3.1457219084519004]
We study experimentally accessible states in a system of bosonic atoms trapped in an open linear chain with disorder.
We find that, within certain tolerances, most states in the chaotic region thermalize.
However, states with low participation ratios in the energy eigenstate basis show greater deviations from thermal equilibrium values.
arXiv Detail & Related papers (2024-07-05T19:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Thermalization of locally perturbed many-body quantum systems [0.0]
We analytically demonstrate that systems satisfying the weak eigenstate thermalization hypothesis exhibit thermalization for two very natural classes of far-from-equilibrium initial conditions.
arXiv Detail & Related papers (2022-02-01T08:16:05Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Eigenstate Thermalisation on Average [0.0]
We consider conditions under which an isolated quantum system approaches a microcanonical equilibrium state.
A key component is the eigenstate thermalisation hypothesis, which proposes that all energy eigenstates appear thermal.
arXiv Detail & Related papers (2021-04-30T12:09:06Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Initial-State Dependence of Thermodynamic Dissipation for any Quantum
Process [0.0]
We show new exact results about the nonequilibrium thermodynamics of open quantum systems at arbitrary timescales.
For any finite-time process with a fixed initial environment, we show that the contraction of the system's distinction exactly quantifies its thermodynamic dissipation.
arXiv Detail & Related papers (2020-02-26T12:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.